INJECTIVITY AND ACCESSIBLE CATEGORIES

Jiří Rosický
Masaryk University, Department of Mathematics
Janáčkovo nám. 2a, 662 95 Brno,
Czech Republic
rosicky@math.muni.cz

Since its creation by S. Eilenberg and S. MacLane [EM], category theory has brought a number of important concepts. Accessible categories are among them and we are going to show how they can help to treat injectivity in algebra, model theory and homotopy theory.

1 Three situation

1.1 Injective modules. Injective modules were introduced by R. Baer [B]. A left R-module M is called injective if for each injective homomorphism $f : A \to B$ and each homomorphism $g : A \to M$ there is a homomorphism $h : B \to M$ such that $h \cdot f = g$.

\[\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow{g} & & \downarrow{h} \\
M & & \\
\end{array} \]

The category R-Mod of left R-modules has enough injectivities, which means that for every R-module A there is an injective homomorphism $A \to M$ with M injective. This was also proved by Baer [B] using his criterion for injectivity.

Baer's Criterion. A left R-module M is injective iff for every left ideal A of R, every homomorphism $A \to R$ can be extended to a homomorphism $R \to M$. One can learn about injective modules and their use in any monograph about module theory (see, e.g., [F]).
1.2 Saturated models. Let T be a first-order theory of a countable signature Σ. Let $\text{Mod}(T)$ be the category of models of the theory T with elementary embeddings as morphisms. For an uncountable regular cardinal λ, a T-model M is called λ-saturated if for each elementary embedding $f : A \to B$ with $\text{card}A, \text{card}B < \lambda$ and each elementary embedding $g : A \to M$ there is an elementary embedding $h : B \to M$ with $h \cdot f = g$.

We have not used the original definition of λ-saturated models (due to Morley and Vaught [MV]) but the characterization given in [S] 16.6. The category $\text{Mod}(T)$ has enough λ-saturated models in the sense that each T-model has an elementary embedding into a λ-saturated model.

1.3 Kan fibrations. The category SSet of simplicial sets is defined as the functor category $\text{Set}^{\Delta^\text{op}}$ where Δ is the category of non-zero finite ordinals and order-preserving maps. The simplicial sets Δ^n, $n \geq 0$ are defined as $\Delta^n = Y(n + 1)$ where $Y : \Delta \to \text{SSet}$ is the Yoneda embedding. The simplicial subsets $\Delta^n_k \subseteq \Delta^n$, $n \geq 0$, $0 \leq k \leq n$ are obtained by excluding the identity morphism $\Delta^n \to \Delta^n$ and the morphism $\Delta^{n-1} \to \Delta^n$ given by the injective order-preserving map $n \to n + 1$ whose image does not contain k. A morphism $p : M \to N$ of simplicial sets is called a Kan fibration if it has the right lifting property w.r.t. each embedding $i^n_k : \Delta^n_k \to \Delta^n$, $n \geq 0$, $0 \leq k \leq n$. It means that for every commutative square

$$
\begin{array}{ccc}
\Delta^n_k & \xrightarrow{g} & M \\
\downarrow{i^n_k} & & \downarrow{p} \\
\Delta^n & \xrightarrow{\gamma} & N
\end{array}
$$

there exists a diagonal
making both triangles commutative.

If \(N = \Delta^0 \) then the unique morphism \(p : M \to \Delta^0 \) (\(\Delta^0 \) is a terminal object in \(\mathbf{SSet} \)) is a Kan fibration iff for each \(i^k_n, n \geq 0, 0 \leq k \leq n \) and for each morphism \(g : \Delta^k_n \to M \) there is a morphism \(h : \Delta^k_n \to M \) with \(h \cdot i^k_n = g \)

Such simplicial sets \(M \) are called Kan complexes. \(\mathbf{SSet} \) has enough Kan complexes in the sense that each simplicial set \(A \) has an embedding \(f : A \to B \) into a Kan complex. Moreover, this embedding \(f \) is an anodyne extension, which is defined by having the left lifting property w.r.t. each Kan fibration \(p \). It means that for every commutative square

there exists a diagonal \(h \) making both triangles commutative. Of course,
Injectivity and accessible categories

every embedding $\Delta^n_k \to \Delta^n$ is an anodyne extension. The just explained property of having enough Kan complexes can be equivalently formulated in the way that each morphism $A \to \Delta^0$ has a factorization

$$A \xrightarrow{f} B \xrightarrow{p} \Delta^0$$

where f is an anodyne extension and p a Kan fibrations. More generally, every morphism $A \to N$ of simplicial sets has a factorization

$$A \xrightarrow{f} B \xrightarrow{p} N$$

where f is an anodyne extension and p a Kan fibration (see, e.g. [GJ]). Kan fibrations were introduced D. M. Kan [K].

2 Accessible categories

An object K of a category \mathcal{K} is called λ-presentable, where λ is a regular cardinal, provided that its hom-functor $\text{hom}(K, -)$ preserves λ-directed colimits. A category \mathcal{K} is called it λ-accessible provided that

1. \mathcal{K} has λ-directed colimits,

2. \mathcal{K} has a set \mathcal{A} of λ-presentable objects such that every object is a λ-directed colimit of objects of \mathcal{A}.

A category is called accessible if it is λ-accessible for some regular cardinal λ. Accessible categories were introduced by C. Lair [L] and their theory was created by M. Makkai and R. Paré [MP]. We will use the monograph [AR]. The first steps towards the theory of accessible categories were made by M. Artin, A. Grothendieck and J. L. Verdier [AGV] and especially by P. Gabriel and F. Ulmer [GU].

2.1 Examples. (1) The category R-Mod is \aleph_0-accessible for every ring R. It has all colimits and \aleph_0-presentable objects are finitely presentable R-modules in the usual module-theoretic sense. Every R-module is a directed colimit of finitely presentable modules. The same argument applies to every variety of universal algebras.
(2) The category $\text{Mod}(T)$ is \aleph_1-accessible for every first-order theory T of a countable signature. It has directed colimits (see [AR] 5.39) and \aleph_1-presentable objects are T-models having countably many elements. Every T-model is an \aleph_1-directed colimit of countable T-models. This can be found in [AR] 5.42 but it is an immediate consequence of the downward Löwenheim-Skolem theorem.

(3) The category SSet is \aleph_0-accessible. It has all colimits and \aleph_0-presentable objects are finite colimits of simplicial sets Δ^n, $n \geq 0$. Every simplicial set is a directed colimit of finite colimits of Δ^n, $n \geq 0$. The same argument applies to every functor category $\text{Set}^{\mathcal{X}}$ where \mathcal{X} is a small category.

(4) Let N be a simplicial set and consider the comma-category $\text{SSet} \downarrow N$. Objects of this category are morphisms $p : A \to N$ of simplicial sets. Morphisms $(A, p) \to (B, q)$ are morphisms $f : A \to B$ of simplicial sets with $q \cdot f = p$.

\[
\begin{tikzcd}
A \arrow{d}[swap]{f} \arrow{r}{p} & \arrow[swap]{d}{q} N \\
B &
\end{tikzcd}
\]

Then $\text{SSet} \downarrow N$ is an \aleph_0-accessible category. It has all colimits and \aleph_0-presentable objects are $f : A \to N$ with A \aleph_0-presentable in SSet. Every object in $\text{SSet} \downarrow N$ is a directed colimit of \aleph_0-presentable objects (see [AR] 1.57).

Let \mathcal{H} be a class of morphisms in a category \mathcal{C}. An object M in \mathcal{C} is called \mathcal{H}-injective if for each morphism $f : A \to B$ in \mathcal{H} and each morphism $g : A \to M$ there is a morphism $h : B \to M$ such that $h \cdot f = g$.

2.2 Examples. (1) Injective R-modules are \mathcal{H}-injective objects in R-Mod for \mathcal{H} consisting of all monomorphisms.

(2) λ-saturated models are \mathcal{H}-injective objects in $\text{Mod}(T)$ for \mathcal{H} consisting of morphisms $f : A \to B$ with $\text{card}A$, $\text{card}B < \lambda$. We recall that these objects are precisely λ-presentable objects.

(3) Kan complexes are \mathcal{H}-injective objects in SSet for \mathcal{H} consisting of anodyne extensions. In fact, we defined them as being injective w.r.t. embeddings $\Delta^n_k \to \Delta^n$, $n \geq 0$, $0 \leq k \leq n$ but it immediately follows from
the definition that they are injective w.r.t. every anodyne extension.

(4) Let \(N \) be a simplicial set and consider the comma-category \(\text{SSet} \downarrow N \). Kan fibrations \(p : M \to N \) are \(\mathcal{H} \)-injective objects for \(\mathcal{H} \) consisting of morphisms \((A, a) \to (B, b)\) carried by anodyne extensions \(f : A \to B \). In fact the defining property of a Kan fibration exactly means that

\[
\begin{array}{ccc}
(A, pu) & \xrightarrow{f} & (B, v) \\
\downarrow u & & \downarrow h \\
(M, p) & & \\
\end{array}
\]

An accessible category does not need to have all colimits (see, for example, 2.1 (2)). We say that a diagram \(D : D \to K \) has a bound in a category \(K \) if there is a compatible cocone \((DD, C_d, C)_{d \in \text{Obj}} \) in \(K \). We say that \(K \) has directed bounds if every directed diagram has a bound in \(K \) and that \(K \) has pushout bounds if every diagram

\[
\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow & & \downarrow \\
C & & \\
\end{array}
\]

has a bound in \(K \).

2.3 Theorem. Let \(K \) be an accessible category with directed and pushout bounds and \(\mathcal{H} \) a set of morphisms in \(K \). Then every object \(K \) in \(K \) has a morphism \(K \to M \) into an \(\mathcal{H} \)-injective object \(L \).

Proof. Following [AR] 2.14 and 2.2 (3), there is a regular cardinal \(\lambda \) such that \(K \) is \(\lambda \)-accessible and every morphism in \(\mathcal{H} \) has a \(\lambda \)-presentable domain. Consider an object \(K \) in \(K \). Let \(\mathcal{X}_K \) be the set of all spans

\[
\begin{array}{ccc}
K & \xrightarrow{u} & C \\
\downarrow & & \downarrow g \\
& D & \\
\end{array}
\]

with \(g \in \mathcal{H} \). We will index these spans by ordinals \(i < \mu_K = \text{card}\mathcal{X}_K \).
We define a chain $k_{ij} : K_i \rightarrow K_j$, $i \leq j \leq \mu_K$ by the following transfinite induction:

First step: $K_0 = K$.

Isolated step: K_{i+1} is given by a pushout bound

$$K_i \xrightarrow{k_{i,i+1}} K_{i+1} \leftarrow C_i \xrightarrow{\sigma_i} D_i$$

where $k_{0,i+1} = k_{i,i+1} \cdot k_{0,i}$.

Limit step: K_i is a bound of the chain

$$K_0 \xrightarrow{k_{01}} K_1 \xrightarrow{k_{12}} \ldots K_j \xrightarrow{k_{j,j+1}} \ldots$$

where $j < i$ and $k_{0i} : K_0 \rightarrow K_i$ is given by this bound.

The object K_{μ_K} will be denoted by K^* and the morphism $K_{0\mu_k} : K \rightarrow K^*$ by t_K. Following the construction, each span $(u_i, g_i) \in \mathcal{X}_K$ has a pushout bound

$$K \xrightarrow{t_k} K^*$$

We define a chain $m_{ij} : M_i \rightarrow M_j$, $i \leq j \leq \lambda$ by the following transfinite induction:

First step: $M_0 = K$.

Isolated step: $m_{i,i+1} : M_i \rightarrow M_{i+1}$ is $t_{M_i} : M_i \rightarrow M^*_i$.

Limit step: M_i is a directed bound of the chain

$$M_0 \xrightarrow{m_{01}} M_1 \xrightarrow{m_{12}} \ldots M_j \xrightarrow{m_{j,j+1}} \ldots$$ (1)

for $j < i < \lambda$ and M_{λ} is a colimit of (1) for $i = \lambda$.

We will show that $m_{0\lambda} : K \rightarrow M_{\lambda}$ is a desired morphism of K into an \mathcal{H}-injective object. Consider a span
Since the object C is λ-presentable and M_{λ} is a directed colimit of M_i, $i < \lambda$, there is a factorization of u through M_i for some $i < \lambda$. Since the span is in the set X_{M_i}, it has a pushout bound. We have

\[u = m_{i,\lambda} \cdot u' = m_{i+1,\lambda} \cdot m_{i,i+1} \cdot u' = m_{i+1,\lambda} \cdot v \cdot g. \]

Hence u factorizes through g, which proves that M_{λ} is \mathcal{H}-injective.

2.4 Examples. (1) The category R-Mod is \aleph_0-accessible and has all colimits. Let \mathcal{H} be the set of all embeddings $A \to R$ where A is a left ideal in
Following Baer’s Criterion \(\mathcal{H} \)-injective modules are precisely injective modules. Following Theorem 2.3 every \(R \)-module has a homomorphism into an injective \(R \)-module.

To prove that \(R\text{-Mod} \) has enough injectives, we have to replace the category \(R\text{-Mod} \) by the category \(R\text{-Mod}_0 \) of \(R \)-modules and injective homomorphisms taken as morphisms. Following [AR] 2.3 (6), \(R\text{-Mod}_0 \) is an accessible category. It has directed colimits (by [AR] 1.62) and pushouts because monomorphisms in \(R\text{-Mod} \) are stable under pushouts. Hence, by applying Theorem 2.3, to the category \(R\text{-Mod}_0 \), we get that \(R\text{-Mod} \) has enough injectives.

(2) Let \(T \) be a first-order theory of a countable signature and \(\lambda \) an uncountable regular cardinal. The category \(\text{Mod}(T) \) has pushout bounds (see [H], p. 288). Hence Theorem 2.3 together with Example 2.1 (2) implies that every \(T \)-model has an elementary embedding into a \(\lambda \)-saturated \(T \)-model. Of course, we take for \(\mathcal{H} \) the set of all elementary embedding \(A \to B \) with \(\text{card}A, \text{card}B < \lambda \).

(3) The category \(\text{SSet} \) is \(\aleph_0 \)-accessible and has all colimits. Let \(\mathcal{H} \) consist of embeddings \(\Delta^n_k \to \Delta^n \), \(n \geq 0, 0 \leq k \leq n \). Following Theorem 2.3, every simplicial set \(A \) has a morphism \(m : A \to M \) into a Kan complex \(M \).

Since \(\text{SSet} \) is cocomplete, we can use colimits instead of bounds in the proof of Theorem 2.3. Hence \(m \) belongs to the closure of \(\mathcal{H} \) under pushouts, compositions and colimits of chains. Every morphism of this closure belongs to \(\square(\mathcal{H}^\square) \) where the box on the right (left) means the use of the right (left) lifting property. Hence \(m \) is an anodyne extension.

More generally, by applying Theorem 2.3 to the category \(\text{SSet} \downarrow N \) (for \(\mathcal{H} \) consisting of morphism carried by embeddings \(\Delta^n_k \to \Delta^n \), \(n \geq 0, 0 \leq k \leq n \)), we get that each morphism \(A \to N \) has a factorization

\[
A \xrightarrow{f} B \xrightarrow{p} N
\]

where \(f \) is an anodyne extension and \(p \) a Kan fibration.

The last example gives the essence of essence of the small object argument already present in [GZ]. This argument is commonly used in homotopy theory (see [Ho]) but the theory of accessible categories has started to be used in homotopy theory only recently (see T. Beke [B]). Our Theorem 2.3 is a very general formulation of the small object argument. The point is that every object of an accessible category is presentable (= small), which
makes possible to stop the construction of an \mathcal{H}-injective object M for K. The next example shows that it is necessary to assume that \mathcal{H} is a set.

2.5 Example. Let Gr be the category of groups and \mathcal{H} the class of all injective homomorphisms. Every group K is a subgroup of a simple group $L \neq K$ (see [Sc]). If K is \mathcal{H}-injective, the embedding $f : K \to L$ splits, i.e., there exists $g : L \to K$ with $g \cdot f = \text{id}_K$; by applying \mathcal{H}-injectivity to

$$
\begin{array}{ccc}
K & \xrightarrow{id_K} & K \\
\downarrow{f} & & \downarrow{g} \\
L & \xrightarrow{g} & K
\end{array}
$$

Since L is simple and $L \neq K$, the homomorphism g has to be constant, i.e., $K = \{1\}$. Therefore the trivial group $\{1\}$ is the only injective ($= \mathcal{H}$-injective) group. Hence the category of groups does not have enough injectives. On the other hand, the category Gr_0 of groups and injective homomorphisms is accessible (following the same reasons as the category R-Mod_0) and the only obstacle to apply Theorem 2.3 is that \mathcal{H} is not a set.

References

