Weak solutions to Neumann discrete nonlinear system of Kirchhoff type

  • Rodrigue Sanou Laboratoire d’analyse Mathématiques et d’Informatique (LaMI), Institut des Sciences Exactes et Appliquées, Université Joseph KI-Zerbo, Ouagadougou, Burkina Faso.
  • Idrissa Ibrango Laboratoire d’analyse Mathématiques et d’Informatique (LaMI), UFR, Sciences et Technique, Université Nazi Boni, 01 BP 1091 Bobo 01, Bobo Dioulasso, Burkina Faso.
  • Blaise Koné Laboratoire d’analyse Mathématiques et d’Informatique (LaMI), Institut des Sciences Exactes et Appliquées, Université Joseph KI-Zerbo, Ouagadougou, Burkina Faso.
  • Aboudramane Guiro Laboratoire d’analyse Mathématiques et d’Informatique (LaMI), UFR, Sciences et Technique, Université Nazi Boni, 01 BP 1091 Bobo 01, Bobo Dioulasso, Burkina Faso.
Keywords: Nonlinear difference equations, anisotropic nonlinear discrete systems, minimization methods, weak solutions

Abstract

We prove the existence of weak solutions for discrete nonlinear system of Kirchhoff type. We build some Hilbert spaces with suitable norms. We define the notion of weak solution corresponding to the problem (1.1). The proof of the main result is based on a minimization method of an energy functional J.

References

[1] G. Bonanno, G. Molica Bisci and V. Radulescu; Arbitrarity small weak solutions for nonlinear eigenvalue problem in Orlicz-Sobolev spaces, Monatshefte fur Mathematik, vol. 165, no. 3-4, pp. 305-318, 2012.
[2] X. Cai and J. Yu; Existence theorems for second-order discrete boundary value problems, J. Math. Anal. Appl. 320 (2006), 649-661.
[3] A. Castro and R. Shivaji; Non-negative solutions for a class of radically symmetric non-positone problems, Proceedings of the American Mathematical Society, vol 106, pp. 735-740, 1989.
[4] Y. Chen, S. Levine, and M.Rao; Variable exponent, linear growth functionals in image restoration, SIAM Journal on Applied Mathematics, vol. 66, no. 4, pp. 1383-1406, 2006.
[5] L. Diening; Theoretical and numerical results for electrorheogica fluids, [PhD. thesis], University of Freiburg, 2002.
[6] A. Guiro, I. Nyanquini and S. Ouaro; On the solvability of discrete nonlinear Neumann problems involving the p(x)-Laplacian, Adv. Differ. equ. 32 (2011).
[7] B. Koné and S. Ouaro; Weak solutions for anisotropic discrete boundary value problems, J. Differ. Equ. Appl. 16(2) (2010), 1-11.
[8] M. Mihailescu, V. Radulescu and S. Tersian; Eigenvalue problems for anisotropic discrete boundary value problems, J. Differ. Equ. Appl. 15 (2009), 557-567.
[9] K. R. Rajagopal and M. Ruzicka; Mathematical modeling of electrorheological materials, Continuum Mechanics and Thermodynamics, vol.13, pp.59-78, 2001.
[10] M. Ruzicka, Electrorheological Fluids; Modeling and Mathematical Theory, vol. 1748 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 2000.
[11] Z. Yucedag; Existence of solutions for anisotropic discrete boundary value problems of Kirchhoff type, Int. J. Differ. Equ. Appl, Vol. 13(1) (2014), 1-15.
[12] G. Zhang and S. Liu; On a class of semi-positone discrete boundary value problem, J. Math. Anal. Appl. 325 (2007), 175-182.
[13] J. Zhao; Positive solutions and eigenvalue intervals for a second order p-Laplacian discrete system, Adv. Differ. equ. 2018 2018:281.
[14] V. Zhikov; Averaging of functionals in the calculus of variations and elasticity, Mathematics of the USSR-Izvestiya, vol.29 (1987), pp. 33-66.
Published
2020-01-20
How to Cite
Sanou, R., Ibrango, I., Koné, B., & Guiro, A. (2020). Weak solutions to Neumann discrete nonlinear system of Kirchhoff type. CUBO, A Mathematical Journal, 21(3), 75–91. https://doi.org/10.4067/S0719-06462019000300075