Bounds for the generalized \( (\Phi;f) \)-mean difference

  • Silvestru Sever Dragomir Mathematics, College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.
Keywords: Gini mean difference, Mean deviation, Lebesgue integral, Expectation, Jensen’s integral inequality

Abstract

In this paper we establish some bounds for the \( (\Phi;f) \)-mean difference introduced in the general settings of measurable spaces and Lebesgue integral, which is a two functions generalization of Gini mean difference that has been widely used by economists and sociologists to measure economic inequality.

References

M. Alomari and M. Darus, The Hadamard’s inequality for s-convex function. Int. J. Math. Anal. (Ruse) 2 (2008), no. 13-16, 639–646.

M. Alomari and M. Darus, Hadamard-type inequalities for s-convex functions. Int. Math. Forum 3 (2008), no. 37-40, 1965–1975.

W. W. Breckner, Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Räumen. (German) Publ. Inst. Math. (Beograd) (N.S.) 23(37) (1978), 13–20.

W. W. Breckner and G. Orbán, Continuity Properties of Rationally s-Convex Mappings with vValues in an Ordered Topological Linear Space. Universitatea ”Babeş-Bolyai”, Facultatea de Matematica, Cluj-Napoca, 1978. viii+92 pp.

P. Cerone and S. S. Dragomir, Bounds for the Gini mean difference via the Sonin identity, Comp. Math. Modelling, 50 (2005), 599-609.

P. Cerone and S. S. Dragomir, Bounds for the Gini mean difference via the Korkine identity, J. Appl. Math. & Computing, 22 (2006), no. 3, 305–315.

P. Cerone and S. S. Dragomir, Bounds for the Gini mean difference of an empirical distribution. Appl. Math. Lett. 19 (2006), no. 3, 283–293.

P. Cerone and S. S. Dragomir, Bounds for the Gini mean difference of continuous distributions defined on finite intervals (I), Appl. Math. Lett. 20 (2007), no. 7, 782–789.

P. Cerone and S. S. Dragomir, Bounds for the Gini mean difference of continuous distributions defined on finite intervals (II), Comput. Math. Appl. 52 (2006), no. 10-11, 1555–1562.

P. Cerone and S. S. Dragomir, A survey on bounds for the Gini mean difference. Advances in inequalities from probability theory and statistics, 81–111, Adv. Math. Inequal. Ser., Nova Sci. Publ., New York, 2008.

P. Cerone and S. S. Dragomir, Bounds for the r-weighted Gini mean difference of an empirical distribution. Math. Comput. Modelling 49 (2009), no. 1-2, 180–188.

X.-L. Cheng and J. Sun, A note on the perturbed trapezoid inequality, J. Inequal. Pure & Appl. Math., 3(2) (2002), Article. 29.

H. A. David, Gini’s mean difference rediscovered, Biometrika, 55 (1968), 573.

S. S. Dragomir, Weighted f-Gini mean difference for convex and symmetric functions in linear spaces. Comput. Math. Appl. 60 (2010), no. 3, 734–743.

S. S. Dragomir, Bounds in terms of Gˆateaux derivatives for the weighted f-Gini mean difference in linear spaces. Bull. Aust. Math. Soc. 83 (2011), no. 3, 420–434.

S. S. Dragomir and S. Fitzpatrick, The Hadamard inequalities for s-convex functions in the second sense. Demonstratio Math. 32 (1999), no. 4, 687–696.

S. S. Dragomir and S. Fitzpatrick, The Jensen inequality for s-Breckner convex functions in linear spaces. Demonstratio Math. 33 (2000), no. 1, 43–49.

S. S. Dragomir and C. E. M. Pearce, Quasi-convex functions and Hadamard’s inequality, Bull. Austral. Math. Soc. 57 (1998), 377-385.

S. S. Dragomir, J. Pečarić and L. Persson, Some inequalities of Hadamard type. Soochow J. Math. 21 (1995), no. 3, 335–341.

J. L. Gastwirth, The estimation of the Lorentz curve and Gini index, Rev. Econom. Statist., 54 (1972), 305-316.

C. Gini, Variabilità e Metabilit`a, contributo allo studia della distribuzioni e relationi statistiche, Studi Economica-Gicenitrici dell’ Univ. di Coglani, 3 (1912), art 2, 1-158.

G. M. Giorgi, Bibliographic portrait of the Gini concentration ratio, Metron, XLVIII(1-4) (1990), 103–221.

G. M. Giorgi, Alcune considerazioni teoriche su di un vecchio ma per sempre attuale indice: il rapporto di concentrazione del Gini, Metron, XLII(3-4) (1984), 25–40.

G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, Cambridge University Press.

H. Hudzik and L. Maligranda, Some remarks on s-convex functions. Aequationes Math. 48 (1994), no. 1, 100–111.

M. Kendal and A. Stuart The Advanced Theory of Statistics, Volume 1, Distribution Theory, Fourth Edition, Charles Griffin & Comp. Ltd., London, 1977.

U. S. Kirmaci, M. Klaričić Bakula, M. E Özdemir and J. Pečarić, Hadamard-type inequalities for s-convex functions. Appl. Math. Comput. 193 (2007), no. 1, 26–35.

C. E. M. Pearce and A. M. Rubinov, P-functions, quasi-convex functions, and Hadamard-type inequalities. J. Math. Anal. Appl. 240 (1999), no. 1, 92–104.

E. Set, M. E. Özdemir and M. Z. Sarikaya, New inequalities of Ostrowski’s type for s-convex functions in the second sense with applications. Facta Univ. Ser. Math. Inform. 27 (2012), no. 1, 67–82.

Published
2020-04-17
How to Cite
Dragomir, S. S. (2020). Bounds for the generalized \( (\Phi;f) \)-mean difference. CUBO, A Mathematical Journal, 22(1), 01–21. https://doi.org/10.4067/S0719-06462020000100001