Certain results on the conharmonic curvature tensor of \( (\kappa,\mu) \)-contact metric manifolds

  • G. Divyashree Department of Mathematics, Govt., Science College, Chitradurga-577501, Karnataka, India.
  • Venkatesha Department of Mathematics, Kuvempu University, Shankaraghatta - 577 451, Shimoga, Karnataka, India.
Keywords: \( (\kappa,\mu) \)-contact metric manifold, conharmonically flat, conharmonically locally \(\phi\)-symmetric, \(\phi\)-conharmonically semisymmetric, \(h\)-conharmonically semisymmetric

Abstract

The paper presents a study of \( (\kappa,\mu) \)-contact metric manifolds satisfying certain conditions on the conharmonic curvature tensor.

References

Blair D. E, Contact manifolds in Riemannian geometry, Lecture Notes in Math. 509, Springer-Verlag, 1976.

D. E. Blair, Two remarks on contact metric structures, Tohoku Math. J., 29, pp. 319-324, 1977.

D.E. Blair, T. Koufogiorgos and B.J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel J. Math., 19, pp. 189-214, 1995.

E. Boeckx, A full classification of contact metric (κ, μ)-spaces, Illinois J. of Math. 44, pp. 212-219, 2000.

A. Ghosh, R. Sharma and J.T. Cho, Contact metric manifolds with η-parallel torsion tensor, Ann. Glob. Anal Geom. 34, pp. 287-299, 2008.

Jun J. B. Yildiz A. and De U. C, On φ-recurrent (κ, μ)contact metric manifolds, Bull. Korean Math. Soc. 45, pp. 689-700, 2008.

Nader Asghari and Abolfazl Taleshian, On the Conharmonic curvature tensor of Kenmotsu manifolds, Thai Journal of Mathematics, 12(3), pp. 525-536, 2014.

C. Özgür, On φ-conformally flat Lorentzian para-Sasakian manifolds, Radovi Matematicki, 12(1), pp. 99-106, 2003.

D. Perrone, Homogeneous contact Riemannian three-manifolds, Illinois J. Math. 42, pp. 243-258, 1998.

A. Sarkar, Matilal Sen and Ali Akbar, Generalized Sasakian space forms with conharmonic curvature tensor, Palestine Journal of Mathematics, 4(1), pp. 84-90, 2015.

A. A. Shaikh and K. Kanti Baishya, On (κ, μ)-contact metric manifolds, Differential Geometry Dynamical Systems, 8, pp. 253-261, 2006.

S. A. Siddiqui and Z. Ahsan, Conharmonic curvature tensor and the space-time of general relativity, Differential Geometry-Dynamical Systems, 12, pp. 213-220, 2010.

A. Yildiz and U. C. De, A classification of (κ, μ)-contact metric manifolds, Commun. Korean Math. Soc., 2, pp. 327-339, 2012.

Published
2020-04-18
How to Cite
Divyashree, G., & Venkatesha. (2020). Certain results on the conharmonic curvature tensor of \( (\kappa,\mu) \)-contact metric manifolds. CUBO, A Mathematical Journal, 22(1), 71–84. https://doi.org/10.4067/S0719-06462020000100071