Results on para-Sasakian manifold admitting a quarter symmetric metric connection

  • Vishnuvardhana S.V. Department of Mathematics, GITAM School of Science, GITAM (Deemed to be University) Bengaluru, Karnataka-561 203, India.
  • Venkatesha Department of Mathematics, Kuvempu University, Shankaraghatta - 577 451, Shimoga, Karnataka, India.
Keywords: Para-Sasakian manifold, pseudosymmetric, Ricci-pseudosymmetric, projectively pseudosymmetric, quarter-symmetric metric connection

Abstract

In this paper we have studied pseudosymmetric, Ricci-pseudosymmetric and projectively pseudosymmetric para-Sasakian manifold admitting a quarter-symmetric metric connection and constructed examples of 3-dimensional and 5-dimensional para-Sasakian manifold admitting a quarter-symmetric metric connection to verify our results.

References

Abul Kalam Mondal and U.C. De, Quarter-symmetric nonmetric Connection on P-Sasakian manifolds, ISRN Geometry, (2012), 1–14.

G. Soos, Über die geodätischen Abbildungen von Riemannaschen Räumen auf projektiv-symmetrische Riemannsche Ra ̈ume, Acta. Math. Acad. Sci. Hungar., 9, (1958), 359–361.

A. Barman, Concircular curvature tensor on a P-Sasakian manifold admitting a quarter-symmetric metric connection, Kragujevac J. Math. 42 (2018), 2, 275–285.

D. V. Alekseevsky et al., Cones over pseudo-Riemannian manifolds and their holonomy, J. Reine Angew. Math. 635 (2009), 23–69.

E. Cartan, Surune classe remarquable d’espaces de Riema, Soc. Math., France, 54 (1926), 214–264.

Cihan Ozgur, On A class of para-Sakakian manifolds, Turk J Math., 29 (2005), 249–257.

V. Cortés et al., Special geometry of Euclidean supersymmetry. I. Vector multiplets, J. High Energy Phys., 03, (2004), 1–64.

V. Cortés, M.-A. Lawn and L. Schäfer, Affine hyperspheres associated to special para-Kähler manifolds, Int. J. Geom. Methods Mod. Phys. 3 (2006), 5-6, 995–1009.

R. Deszcz, On pseudosymmetric spaces, Acta Math., Hungarica, 53 (1992), 185–190.

R. Deszcz and S. Yaprak, Curvature properties of certain pseudosymmetric manifolds, Publ. Math. Debrecen 45 (1994), 3-4, 333–345.

R. Deszcz et al., On some curvature conditions of pseudosymmetry type, Period. Math. Hungar. 70 (2015), 2, 153–170.

S. Golab, On semi-symmetric and quarter-symmetric linear connections, Tensor (N.S.) 29 (1975), 3, 249–254.

S. Haesen and L. Verstraelen, Properties of a scalar curvature invariant depending on two planes, Manuscripta Math. 122 (2007), 1, 59–72.

S. Kaneyuki and F. L. Williams, Almost paracontact and parahodge structures on manifolds, Nagoya Math. J. 99 (1985), 173–187.

Lata Bisht and Sandhana Shanker, Curvature tensor on para-Sasakian manifold admitting quarter symmetric metric connection, IOSR Journal of Mathematics, 11(5), (2015), 22–28.

K. Mandal and U. C. De, Quarter-symmetric metric connection in a P-Sasakian manifold, An. Univ. Vest Timi ̧s. Ser. Mat.-Inform. 53 (2015), 1, 137–150.

K.T. Pradeep Kumar, Venkatesha and C.S. Bagewadi, On φ-recurrent para-Sasakian manifold admitting quarter-symmetric metric connection, ISRN Geometry, (2012), 1-10.

I. Sato, On a structure similar to the almost contact structure, Tensor (N.S.) 30 (1976), 3, 219–224.

Z. I. Szabo, Structure theorems on Riemannian spaces satisfying R(X, Y ) · R = 0. I. The local version, J. Differential Geometry 17 (1982), 4, 531–582.

Published
2020-08-23
How to Cite
S.V., V., & Venkatesha. (2020). Results on para-Sasakian manifold admitting a quarter symmetric metric connection. CUBO, A Mathematical Journal, 22(2), 257–271. https://doi.org/10.4067/S0719-06462020000200257