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ABSTRACT

In this work, we study the existence, uniqueness, continuous

dependence and Ulam stability of mild solutions for an itera-

tive Caputo fractional differential equation by first inverting

it as an integral equation. Then we construct an appropri-

ate mapping and employ the Schauder fixed point theorem

to prove our new results. At the end we give an example to

illustrate our obtained results.

RESUMEN

En este trabajo, estudiamos la existencia, unicidad, depen-

dencia continua y estabilidad de Ulam de soluciones mild

para una ecuación diferencial fraccionaria de Caputo itera-

tiva, invirtiéndola primero como ecuación integral. Luego

construimos una aplicación apropiada y empleamos el teo-

rema del punto fijo de Schauder para demostrar nuestros

nuevos resultados. Finalmente damos un ejemplo para ilus-

trar los resultados obtenidos.
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1 Introduction

Fractional differential equations have gained considerable importance due to their applications in

various sciences, such as physics, mechanics, chemistry, engineering, etc. In recent years, there has

been a significant development in ordinary and partial differential equations involving fractional

derivatives, see the monographs of Kilbas et al. [10], Miller and Ross [12], Podlubny [14]. In

particular, problems concerning qualitative analysis of linear and nonlinear fractional differential

equations with and without delay have received the attention of many authors, see [1]–[4], [6]–[16],

[18] and the references therein.

Recently, iterative functional differential equations of the form

x′ (t) = H
(

x[0] (t) , x[1] (t) , x[2] (t) , . . . , x[n] (t)
)

,

have appeared in several papers, where

x[0] (t) = t, x[1] (t) = x (t) , x[2] (t) = x (x (t)) , . . . , x[n] (t) = x[n−1] (x (t))

are the iterates of the state x(t).

Iterative differential equations often arise in the modeling of a wide range of natural phenomena

such as disease transmission models in epidemiology, two-body problem of classical electrodynam-

ics, population models, physical models, mechanical models and other numerous models. This kind

of equations which relates an unknown function, its derivatives and its iterates, is a special type

of the so-called differential equations with state-dependent delays, see [5, 9, 19] and the references

therein.

In this paper, inspired and motivated by the references [1]–[16], [18, 19], we concentrate on the

existence, uniqueness, continuous dependence and Ulam stability of mild solutions for the nonlinear

iterative fractional differential equation






CDα
0+x (t) = f

(

x[0] (t) , x[1] (t) , x[2] (t) , . . . , x[n] (t)
)

, t ∈ J,

x (0) = x′ (0) = 0,
(1.1)

where J = [0, T ], CDα
0+ is the standard Caputo fractional derivative of order α ∈ (1, 2) and f is

a positive continuous function with respect to its arguments and satisfies some other conditions

that will be specified later. To reach our desired end we have to transform (1.1) into an integral

equation and then use the Schauder fixed point theorem to show the existence and uniqueness of

mild solutions.

The organization of this paper is as follows. In Section 2, we introduce some definitions and lemmas,

and state some preliminary results needed in later sections. Also, we present the inversion of (1.1)

and state the Schauder fixed point theorem. For details on the Schauder theorem we refer the

reader to [17]. In Section 3, we present our main results on the existence, uniqueness, continuous
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dependence and Ulam stability of mild solutions for the problem (1.1) and provide an example to

illustrate our results.

2 Preliminaries

Let C (J,R) be the Banach space of all real-valued continuous functions defined on the compact

interval J , endowed with the norm

‖x‖ = sup
t∈J

|x (t)| .

For 0 < L ≤ T and M > 0, define the sets

C (J, L) = {x ∈ C (J,R) : 0 ≤ x (t) ≤ L, ∀t ∈ J} ,

and

CM (J, L) = {x ∈ C (J, L) : |x (t2)− x (t1)| ≤M |t2 − t1| , ∀t1, t2 ∈ J}.

Then, CM (J, L) is a closed convex and bounded subset of C (J,R).

Furthermore, we suppose that the positive function f is globally Lipschitz in xi, that is, there exist

positive constants c1, c2, . . . , cn such that

|f (t, x1, x2, . . . , xn)− f (t, y1, y2, . . . , yn)| ≤
n
∑

i=1

ci |xi − yi| . (2.1)

We introduce the constants

ρ = sup
t∈J

{f (t, 0, 0, . . . , 0)} ,

ζ = ρ+ L

n
∑

i=1

ci

i−1
∑

j=0

M j,

where M j =M ×M j−1.

Definition 2.1 ([10]). The fractional integral of order α > 0 of a function x : R+ −→ R is given

by

Iα0+x (t) =
1

Γ (α)

∫ t

0

(t− s)
α−1

x (s) ds,

provided the right side is pointwise defined on R
+, where Γ is the gamma function.

For instance, Iα0+x exists for all α > 0, when x ∈ C(R+) then Iα0+x ∈ C (R+) and moreover

Iα0+x(0) = 0.

Definition 2.2 ([10]). The Caputo fractional derivative of order α > 0 of a function x : R+ −→ R

is given by

CDα
0+x (t) = In−α

0+ x(n) (t) =
1

Γ (n− α)

∫ t

0

(t− s)
n−α−1

x(n) (s) ds,

where n = [α] + 1, provided the right side is pointwise defined on R
+.
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Lemma 2.3 ([10]). Suppose that x ∈ Cn−1 ([0,+∞)) and x(n) exists almost everywhere on any

bounded interval of R+. Then

(

Iα C
0+ Dα

0+x
)

(t) = x (t)−

n−1
∑

k=0

x(k) (0)

k!
tk.

In particular, when α ∈ (1, 2) ,
(

Iα C
0+ Dα

0+x
)

(t) = x (t)− x (0)− x′ (0) t.

Definition 2.4. A function x ∈ CM (J, L) is a mild solution of the problem (1.1) if x satisfies the

corresponding integral equation of (1.1).

From Lemma 2.3, we deduce the following lemma.

Lemma 2.5. Let x ∈ CM (J, L) is a mild solution of (1.1) if x satisfies

x (t) =
1

Γ (α)

∫ t

0

(t− s)α−1 f
(

x[0] (s) , x[1] (s) , x[2] (s) , . . . , x[n] (s)
)

ds, t ∈ J. (2.2)

Lemma 2.6 ([19]). If ϕ, ψ ∈ CM (J, L), then

∥

∥

∥
ϕ[m] − ψ[m]

∥

∥

∥
≤

m−1
∑

j=0

M j ‖ϕ− ψ‖ , m = 1, 2, . . .

Theorem 2.7 (Schauder fixed point theorem [17]). Let M be a nonempty compact convex subset

of a Banach space (B, ‖·‖) and A : M → M is a continuous mapping. Then A has a fixed point.

3 Main results

In this section, we use Theorem 2.7 to prove the existence of mild solutions for (1.1). Moreover,

we will introduce the sufficient conditions of the uniqueness of mild solutions of (1.1).

To transform (2.2) to be applicable to the Schauder fixed point, we define an operator A :

CM (J, L) → C (J,R) by

(Aϕ)(t) =
1

Γ (α)

∫ t

0

(t− s)
α−1

f
(

ϕ[0] (s) , ϕ[1] (s) , ϕ[2] (s) , . . . , ϕ[n] (s)
)

ds, t ∈ J. (3.1)

Since CM (J, L) is a compact set as a uniformly bounded, equicontinuous and closed subset of the

space C (J,R). To prove that operator A has at least one fixed point, we will prove that A is well

defined, continuous and A(CM (J, L)) ⊂ CM (J, L), i. e.

Aϕ ∈ CM (J, L) for all ϕ ∈ CM (J, L) .

Lemma 3.1. Suppose that (2.1) holds. Then the operator A : CM (J, L) → C (J,R) given by (3.1)

is well defined and continuous.
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Proof. Let A be defined by (3.1). Clearly, A is well defined. To show the continuity of A. Let

ϕ, ψ ∈ CM (J, L), we have

|(Aϕ)(t) − (Aψ)(t)| ≤
1

Γ (α)

∫ t

0

(t− s)
α−1

∣

∣

∣
f
(

ϕ[0] (s) , ϕ[1] (s) , ϕ[2] (s) , . . . , ϕ[n] (s)
)

−f
(

ψ[0] (s) , ψ[1] (s) , ψ[2] (s) , . . . , ψ[n] (s)
)
∣

∣

∣
ds.

By (2.1), we obtain

|(Aϕ)(t) − (Aψ)(t)| ≤
1

Γ (α)

∫ t

0

(t− s)α−1
n
∑

i=1

ci

∥

∥

∥
ϕ[i] − ψ[i]

∥

∥

∥
ds.

It follows from Lemma 2.6 that

|(Aϕ)(t) − (Aψ)(t)| ≤
1

Γ (α)

∫ t

0

(t− s)
α−1

n
∑

i=1

ci

i−1
∑

j=0

M j ‖ϕ− ψ‖ ds

≤
Tα

Γ (α+ 1)

n
∑

i=1

ci

i−1
∑

j=0

M j ‖ϕ− ψ‖ ,

which proves that the operator A is continuous.

Lemma 3.2. Suppose that (2.1) holds. If

ζTα

Γ (α+ 1)
≤ L, (3.2)

and
ζTα−1

Γ (α)
≤M, (3.3)

then A(CM (J, L)) ⊂ CM (J, L).

Proof. For ϕ ∈ CM (J, L), we get

|(Aϕ)(t)| ≤
1

Γ (α)

∫ t

0

(t− s)α−1
∣

∣

∣
f
(

ϕ[0] (s) , ϕ[1] (s) , ϕ[2] (s) , . . . , ϕ[n] (s)
)∣

∣

∣
ds.

But

∣

∣

∣
f
(

ϕ[0] (s) , ϕ[1] (s) , ϕ[2] (s) , . . . , ϕ[n] (s)
)∣

∣

∣

=
∣

∣

∣
f
(

s, ϕ[1] (s) , ϕ[2] (s) , . . . , ϕ[n] (s)
)

− f (s, 0, 0, . . . , 0) + f (s, 0, 0, . . . , 0)
∣

∣

∣

≤
∣

∣

∣
f
(

s, ϕ[1] (s) , ϕ[2] (s) , . . . , ϕ[n] (s)
)

− f (s, 0, 0, . . . , 0)
∣

∣

∣
+ |f (s, 0, 0, . . . , 0)|

≤ ρ+

n
∑

i=1

ci

i−1
∑

j=0

M j ‖ϕ‖

≤ ρ+ L

n
∑

i=1

ci

i−1
∑

j=0

M j = ζ,
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then

|(Aϕ)(t)| ≤
ζ

Γ (α)

∫ t

0

(t− s)α−1 ds ≤
ζTα

Γ (α+ 1)
≤ L.

From (3.2), we have

0 ≤ (Aϕ)(t) ≤ |(Aϕ)(t)| ≤ L.

Let t1, t2 ∈ J with t1 < t2, we have

|(Aϕ) (t2)− (Aϕ) (t1)|

≤
1

Γ (α)

∫ t1

0

∣

∣

∣
(t2 − s)

α−1
− (t1 − s)

α−1
∣

∣

∣

∣

∣

∣
f
(

ϕ[0] (s) , ϕ[1] (s) , ϕ[2] (s) , . . . , ϕ[n] (s)
)∣

∣

∣
ds

+
1

Γ (α)

∫ t2

t1

(t2 − s)
α−1

∣

∣

∣
f
(

ϕ[0] (s) , ϕ[1] (s) , ϕ[2] (s) , . . . , ϕ[n] (s)
)
∣

∣

∣
ds

≤
ζ

Γ (α)

(
∫ t1

0

(

(t2 − s)
α−1

− (t1 − s)
α−1

)

ds+

∫ t2

t1

(t2 − s)
α−1

ds

)

≤
ζ

Γ (α+ 1)
(tα2 − tα1 )

≤
ζTα−1

Γ (α)
|t2 − t1| .

Using (3.3), we obtain

|(Aϕ) (t2)− (Aϕ) (t1)| ≤M |t2 − t1| .

Therefore, Aϕ ∈ CM (J, L) for all ϕ ∈ CM (J, L). So, we conclude that A(CM (J, L)) ⊂ CM (J, L).

Theorem 3.3. Suppose that conditions (2.1), (3.2) and (3.3) hold. Then (1.1) has at least one

mild solution x in CM (J, L).

Proof. From Lemma 2.5, the problem (1.1) has a mild solution x on CM (J, L) if and only if

the operator A defined by (3.1) has a fixed point. From Lemmas 3.1 and 3.2, all conditions of

the Schauder fixed point theorem are satisfied. Consequently, A has at least one fixed point on

CM (J, L) which is a mild solution of (1.1).

Theorem 3.4. In addition to the assumptions of Theorem 3.3, if we suppose that

Tα

Γ (α+ 1)

n
∑

i=1

ci

i−1
∑

j=0

M j < 1, (3.4)

then (1.1) has a unique mild solution in CM (J, L).

Proof. Let ϕ and ψ be two distinct fixed points of the operator A. Similarly as in the proof of

Lemma 3.1 we have

|ϕ (t)− ψ (t)| = |(Aϕ) (t)− (Aψ) (t)| ≤
Tα

Γ (α+ 1)

n
∑

i=1

ci

i−1
∑

j=0

M j ‖ϕ− ψ‖ .
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It follows from (3.4) that

‖ϕ− ψ‖ < ‖ϕ− ψ‖ .

Therefore, we arrive at a contradiction. We conclude that A has a unique fixed point which is the

unique mild solution of (1.1).

Theorem 3.5. Suppose that the conditions of Theorem 3.4 hold. The unique mild solution of

(1.1) depends continuously on the function f .

Proof. Let f1, f2 : J × R
n → [0,+∞) two continuous functions with respect to their arguments.

From Theorem 3.4, it follows that there exist two unique corresponding functions x1 and x2 in

CM (J, L) such that

x1 (t) =
1

Γ (α)

∫ t

0

(t− s)α−1 f1

(

x
[0]
1 (s) , x

[1]
1 (s) , x

[2]
1 (s) , . . . , x

[n]
1 (s)

)

ds,

and

x2 (t) =
1

Γ (α)

∫ t

0

(t− s)
α−1

f2

(

x
[0]
2 (s) , x

[1]
2 (s) , x

[2]
2 (s) , . . . , x

[n]
2 (s)

)

ds.

We get

|x2 (t)− x1 (t)| ≤
1

Γ (α)

∫ t

0

(t− s)
α−1

∣

∣

∣
f2

(

x
[0]
2 (s) , x

[1]
2 (s) , x

[2]
2 (s) , . . . , x

[n]
2 (s)

)

−f1

(

x
[0]
1 (s) , x

[1]
1 (s) , x

[2]
1 (s) , . . . , x

[n]
1 (s)

)∣

∣

∣
ds.

But

∣

∣

∣
f2

(

x
[0]
2 (s) , x

[1]
2 (s) , x

[2]
2 (s) , . . . , x

[n]
2 (s)

)

−f1

(

x
[0]
1 (s) , x

[1]
1 (s) , x

[2]
1 (s) , . . . , x

[n]
1 (s)

)
∣

∣

∣

=
∣

∣

∣
f2

(

x
[0]
2 (s) , x

[1]
2 (s) , x

[2]
2 (s) , . . . , x

[n]
2 (s)

)

− f2

(

x
[0]
1 (s) , x

[1]
1 (s) , x

[2]
1 (s) , . . . , x

[n]
1 (s)

)

+ f2

(

x
[0]
1 (s) , x

[1]
1 (s) , x

[2]
1 (s) , . . . , x

[n]
1 (s)

)

−f1

(

x
[0]
1 (s) , x

[1]
1 (s) , x

[2]
1 (s) , . . . , x

[n]
1 (s)

)∣

∣

∣
.

Using (2.1) and Lemma 2.6, we arrive at

∣

∣

∣
f2

(

x
[0]
2 (s) , x

[1]
2 (s) , x

[2]
2 (s) , . . . , x

[n]
2 (s)

)

−f1

(

x
[0]
1 (s) , x

[1]
1 (s) , x

[2]
1 (s) , . . . , x

[n]
1 (s)

)
∣

∣

∣

≤ ‖f2 − f1‖+
n
∑

i=1

ci

i−1
∑

j=0

M j ‖x2 − x1‖ .

Hence

‖x2 − x1‖ ≤
Tα

Γ (α+ 1)
‖f2 − f1‖+

Tα

Γ (α+ 1)

n
∑

i=1

ci

i−1
∑

j=0

M j ‖x2 − x1‖ .

Therefore

‖x2 − x1‖ ≤

Tα

Γ(α+1)

1− Tα

Γ(α+1)

n
∑

i=1

ci
i−1
∑

j=0

M j

‖f2 − f1‖ .

This completes the proof.



90 A. Guerfi & A. Ardjouni CUBO
24, 1 (2022)

Now, we investigate the Ulam-Hyers stability and generalized Ulam-Hyers stability for the problem

(1.1).

Definition 3.6 ([18]). The problem (1.1) is said to be Ulam-Hyers stable if there exists a real

number Kf > 0 such that for each ǫ > 0 and for each mild solution y ∈ CM (J, L) of the inequality

∣

∣

∣

CDα
0+y (t)− f

(

y[0] (t) , y[1] (t) , y[2] (t) , . . . , y[n] (t)
)∣

∣

∣
≤ ǫ, t ∈ J, (3.5)

with y (0) = y′ (0) = 0, there exists a mild solution x ∈ CM (J, L) of the problem (1.1) with

|y (t)− x (t)| ≤ Kfǫ, t ∈ J.

Definition 3.7 ([18]). The problem (1.1) is generalized Ulam-Hyers stable if there exists ψ ∈

C (J,R+) with ψ (0) = 0 such that for each ǫ > 0 and for each mild solution y ∈ CM (J, L) of the

inequality (3.5) with y (0) = y′ (0) = 0, there exists a mild solution x ∈ CM (J, L) of the problem

(1.1) with

|y (t)− x (t)| ≤ ψ (ǫ) , t ∈ J.

Theorem 3.8. Assume that the assumptions of Theorem 3.4 hold. Then the problem (1.1) is

Ulam-Hyers stable.

Proof. Let y ∈ CM (J, L) be a mild solution of the inequality (3.5) with y (0) = y′ (0) = 0, i.e.






∣

∣

CDα
0+y (t)− f

(

y[0] (t) , y[1] (t) , y[2] (t) , . . . , y[n] (t)
)∣

∣ ≤ ǫ, t ∈ J,

y (0) = y′ (0) = 0.
(3.6)

Let us denote by x ∈ CM (J, L) the unique mild solution of the problem (1.1). By using Lemma

2.5, we get

x (t) =
1

Γ (α)

∫ t

0

(t− s)
α−1

f
(

x[0] (s) , x[1] (s) , x[2] (s) , . . . , x[n] (s)
)

ds, t ∈ J.

By integration of (3.6), we have
∣

∣

∣

∣

y (t)−
1

Γ (α)

∫ t

0

(t− s)
α−1

f
(

y[0] (s) , y[1] (s) , y[2] (s) , . . . , y[n] (s)
)

ds

∣

∣

∣

∣

≤
tα

Γ (α+ 1)
ǫ ≤

Tα

Γ (α+ 1)
ǫ.

On the other hand, we obtain, for each t ∈ J

|y (t)− x (t)| =

∣

∣

∣

∣

y (t)−
1

Γ (α)

∫ t

0

(t− s)α−1 f
(

x[0] (s) , x[1] (s) , x[2] (s) , . . . , x[n] (s)
)

ds

∣

∣

∣

∣

≤

∣

∣

∣

∣

y (t)−
1

Γ (α)

∫ t

0

(t− s)
α−1

f
(

y[0] (s) , y[1] (s) , y[2] (s) , . . . , y[n] (s)
)

ds

∣

∣

∣

∣

+
1

Γ (α)

∫ t

0

(t− s)
α−1

∣

∣

∣
f
(

y[0] (s) , y[1] (s) , y[2] (s) , . . . , y[n] (s)
)

−f
(

x[0] (s) , x[1] (s) , x[2] (s) , . . . , x[n] (s)
)∣

∣

∣
ds

≤
Tα

Γ (α+ 1)
ǫ+

Tα

Γ (α+ 1)

n
∑

i=1

ci

i−1
∑

j=0

M j ‖y − x‖ .
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Thus, in view of (3.4)

‖y − x‖ ≤

Tα

Γ(α+1)

1− Tα

Γ(α+1)

n
∑

i=1

ci
i−1
∑

j=0

M j

ǫ.

Then, there exists a real number Kf = Tα/

(

Γ (α+ 1)− Tα
n
∑

i=1

ci
i−1
∑

j=0

M j

)

> 0 such that

|y (t)− x (t)| ≤ Kf ǫ, t ∈ J. (3.7)

Thus, the problem (1.1) is Ulam-Hyers stable, which completes the proof.

Corollary 3.9. Suppose that all the assumptions of Theorem 3.8 are satisfied. Then the problem

(1.1) is generalized Ulam-Hyers stable.

Proof. Let ψ (ǫ) = Kf ǫ in (3.7) then ψ (0) = 0 and the problem (1.1) is generalized Ulam-Hyers

stable.

Example 3.10. Let us consider the following nonlinear fractional initial value problem






CD
3
2

0+x (t) =
1
4 + 1

4 cos t+
1
18 cos

2 (t)x[1] (t) + 1
19 sin

2 (t) x[2] (t) , t ∈ [0, 1] ,

x (0) = x′ (0) = 0,
(3.8)

where T = 1, J = [0, 1] and

f (t, x, y) =
1

4
+

1

4
cos t+

1

18
x cos2 (t) +

1

19
y sin2 (t) .

We have

|f (t, x1, x2)− f (t, y1, y2)| ≤
1

18
|x1 − y1|+

1

19
|x2 − y2| ,

then

|f (t, x1, x2)− f (t, y1, y2)| ≤

2
∑

i=1

ci ‖xi − yi‖ .

with c1 = 1
18 , c2 = 1

19 . Furthermore, if L = 1 and M = 4 in the definition of CM (J, L), then f is

positive, ρ = sup
t∈J

{f (t, 0, 0)} = 1
2 and ζ = 0.5 +

(

1
18 + 4

19

)

≃ 0.766. For α = 3
2 , we get

ζTα

Γ (α+ 1)
=

0.766

Γ
(

5
2

) ≃ 0.576 ≤ L = 1,

and
ζTα−1

Γ (α)
=

0.766

Γ
(

3
2

) ≃ 0.864 ≤M = 4.

So,

Tα

Γ (α+ 1)

n
∑

i=1

ci

i−1
∑

j=0

M j =
1

Γ
(

5
2

)

(

1

18
+

4

19

)

≃ 0.2 < 1.

Then, by Theorems 3.4 and 3.5, (3.8) has a unique mild solution which depends continuously on

the function f . Also, from Theorem 3.8, (3.8) is Ulam-Hyers stable, and from Corollary 3.9, (3.8)

is generalized Ulam-Hyers stable.
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4 Conclusion

In the current paper, under some sufficient conditions on the nonlinearity, we established the

existence, uniqueness, continuous dependence and Ulam stability of a mild solution for an iterative

Caputo fractional differential equation. The main tool of this work is the Schauder fixed point

theorem. The obtained results have a contribution to the related literature.
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