Smooth quotients of abelian surfaces by finite groups that fix the origin

  • Robert Auffarth Departamento de Matemáticas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile.
  • Giancarlo Lucchini Arteche Departamento de Matemáticas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile.
  • Pablo Quezada Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile.
Keywords: Abelian surfaces, automorphisms

Abstract

Let \(A\) be an abelian surface and let \(G\) be a finite group of automorphisms of \(A\) fixing the origin. Assume that the analytic representation of \(G\) is irreducible. We give a classification of the pairs \((A,G)\) such that the quotient \(A/G\) is smooth. In particular, we prove that \(A=E^2\) with \(E\) an elliptic curve and that \(A/G\simeq\mathbb P^2\) in all cases. Moreover, for fixed \(E\), there are only finitely many pairs \((E^2,G)\) up to isomorphism. This fills a small gap in the literature and completes the classification of smooth quotients of abelian varieties by finite groups fixing the origin started by the first two authors.

References

R. Auffarth, “A note on Galois embeddings of abelian varieties”, Manuscripta Math., vol. 154, no. 3–4, pp. 279–284, 2017.

R. Auffarth and G. Lucchini Arteche, “Smooth quotients of abelian varieties by finite groups”, Ann. Sc. Norm. Sup. Pisa Cl. Sci. (5), vol. 21, pp. 673–694, 2020.

V. Popov. Discrete complex reflection groups, Communications of the Mathematical Institute, Rijksuniversiteit Utrecht, 15, Netherland: Rijksuniversiteit Utrecht, 1982.

G. C. Shephard and J. A. Todd, “Finite unitary reflection groups”. Canad. J. Math., vol. 6, pp. 274–304, 1954.

O. V. Švarcman, “A Chevalley theorem for complex crystallographic groups that are generated by mappings in the affine space C^2” (Russian), Uspekhi Mat. Nauk, vol. 34, no.1(205), pp. 249–250, 1979.

S. Tokunaga and M. Yoshida.“Complex crystallographic groups. I.”, J. Math. Soc. Japan, vol. 34, no. 4, pp. 581–593, 1982.

H. Yoshihara, “Galois embedding of algebraic variety and its application to abelian surface”, Rend. Semin. Mat. Univ. Padova, vol. 117, pp. 69–85, 2007.

Published
2022-04-04
How to Cite
[1]
R. Auffarth, G. Lucchini Arteche, and P. Quezada, “Smooth quotients of abelian surfaces by finite groups that fix the origin”, CUBO, vol. 24, no. 1, pp. 37–51, Apr. 2022.
Section
Articles