Variational methods to second-order Dirichlet boundary value problems with impulses on the half-line

  • Meriem Djibaoui Laboratory of Fixed Point Theory and Applications, École Normale Supérieure, Kouba, Algiers. Algeria.
  • Toufik Moussaoui Laboratory of Fixed Point Theory and Applications, École Normale Supérieure, Kouba, Algiers. Algeria.
Keywords: Dirichlet boundary value problem, half-line, Lax-Milgram theorem, critical points, impulsive differential equation

Abstract

In this paper, the existence of solutions for a second-order impulsive differential equation with a parameter on the half-line is investigated. Applying Lax-Milgram theorem, we deal with a linear Dirichlet impulsive problem, while the non-linear case is established by using standard results of critical point theory.

References

L. Bai and J. J. Nieto, “Variational approach to differential equations with not instantaneous impulses”, Appl. Math. Lett., vol. 73, pp. 44–48, 2017.

V. Barutello, R. Ortega and G. Verzini, “Regularized variational principles for the perturbed Kepler problem”, Adv. Math., vol. 383, Paper No. 107694, 64 pages, 2021.

D. Bouafia and T. Moussaoui, “Existence results for a sublinear second order Dirichlet boundary value problem on the half-line”, Opuscula Math., vol. 40, no. 5, pp. 537–548, 2020.

H. Brézis, Functional analysis, Sobolev spaces and partial differential equations, New York: Springer, 2011.

M. Chipot, Elements of nonlinear analysis, Birkhäuser Advanced Texts: Basler Lehrbücher, Basel: Birkhäuser Verlag, 2000.

O. Frites, T. Moussaoui and D. O’Regan, “Existence of solutions for a variational inequality on the half-line”, Bull. Iranian Math. Soc., vol. 43, no. 1, pp. 223–237, 2017.

J. Mawhin and M. Willem, Critical point theory and Hamiltonian systems, Applied Mathematical Sciences, vol. 74, Berlin: Springer-Verlag, 1989.

J. J. Nieto and D. O’Regan, “Variational approach to impulsive differential equations”, Non- linear Anal. Real World Appl., vol. 10, no. 2, pp. 680–690, 2009.

J. J. Nieto and J. M. Uzal, “Nonlinear second-order impulsive differential problems with dependence on the derivative via variational structure”, J. Fixed Point Theory Appl., vol. 22, no. 1, Paper No. 19, 13 pages, 2020.

Y. Wei, “Existence and uniqueness of solutions for a second-order delay differential equation boundary value problem on the half-line”, Bound. Value Probl., Art. ID 752827, 14 pages, 2008.

Published
2022-08-22
How to Cite
[1]
M. Djibaoui and T. Moussaoui, “Variational methods to second-order Dirichlet boundary value problems with impulses on the half-line”, CUBO, vol. 24, no. 2, pp. 227–237, Aug. 2022.
Section
Articles