TY - JOUR
AU - Güney, H. Özlem
AU - Murugusundaramoorthy, G.
AU - Vijaya, K.
PY - 2021/08/01
Y2 - 2022/01/19
TI - Subclasses of \(\lambda\)-bi-pseudo-starlike functions with respect to symmetric points based on shell-like curves
JF - CUBO, A Mathematical Journal
JA - CUBO
VL - 23
IS - 2
SE - Articles
DO - 10.4067/S0719-06462021000200299
UR - https://revistas.ufro.cl/ojs/index.php/cubo/article/view/2718
SP - 299–312
AB - In this paper we define the subclass \(\mathcal{PSL}^\lambda_{s,\Sigma}(\alpha,\tilde{p}(z))\) of the class \(\Sigma\) of bi-univalent functions defined in the unit disk, called \(\lambda\)-bi-pseudo-starlike, with respect to symmetric points, related to shell-like curves connected with Fibonacci numbers. We determine the initial Taylor-Maclaurin coefficients \(|a_2|\) and \(|a_3|\) for functions \(f\in\mathcal{PSL}^\lambda_{s,\Sigma}(\alpha,\tilde{p}(z)).\) Further we determine the Fekete-Szegö result for the function class \(\mathcal{PSL}^\lambda_{s,\Sigma}(\alpha,\tilde{p}(z))\) and for the special cases \(\alpha=0\), \(\alpha=1\) and \(\tau =-0.618\) we state corollaries improving the initial Taylor-Maclaurin coefficients \(|a_2|\) and \(|a_3|\).
ER -