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Abstract 

Water hammer is analyzed using an original hybrid scheme that solves the transient flow by applying the Method 
of Characteristics (MOC) on those pipes with a Courant number equal or approximately equal to 1.0, and the 
Implicit Finite−Difference Method (IFDM) on the pipes with Courant less than 1.0. The proposed algorithm allows 
solve the transient flow problem applying the best method (MOC or IFDM) in each system pipe depending on the 
Courant number assigned to it. By analyzing the transient flow in two pipe networks it is demonstrated that this 
solution-type allows obtain almost exact and/or conservative solutions without consuming too many resources 
such as computational memory and software execution time. 

 
 
 

Resumen 

Se analiza el golpe de ariete utilizando un esquema híbrido original que resuelve el flujo transitorio aplicando el 
Método de las Características (MC) en aquellas tuberías con un número de Courant igual o aproximadamente 
igual a 1.0 y el Método de Diferencias Finitas Implícito (MDFI) en las tuberías con Courant inferior a 1.0. El 
algoritmo propuesto permite resolver el problema del flujo transitorio aplicando el mejor método (MC o MDFI) 
en cada tubería del sistema, dependiendo del número de Courant que tenga asignado. Al analizar el flujo 
transiente en dos redes de tuberías se demuestra que este tipo de solución permite obtener soluciones casi 
exactas y/o conservadoras sin consumir demasiados recursos relacionados con la memoria computacional y el 
tiempo de ejecución del software. 
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1. Introduction. 

In the modern era the transient flow study has occupied the 
attention of prominent researchers since the late eighteenth 
century, when Euler made his first contributions on the subject 
[25]. This process had a renewed impetus in the mid-1960s when 
Streeter and Lai [18] presented the first studies using 
computational methods. This was the beginning of a need tide 
related to the efficient pipe networks modelling, with the 
objective of assuring design and operation levels that would allow 

reduce the costs and ensure the longevity of the systems with a 
minimum of service interruption. Despite the theoretical 
development observed internationally in the last decades, the 
quantity of computer programs and specialized services for the 
water hammer analysis is not abundant. This may be because of 
the problem complexity where the research and development 
(R&D) can take several years. In general, knowledge about the 
subject can be mainly sought on universities and some 
international engineering and consulting companies (Table 1). 

 

Table 1: Some institutions and companies dedicated to the water hammer study and solution. 

Institution Software name Solution method 

Applied Flow Technology AFT Impulse Method of Characteristics (MOC) 

Flow Science Inc. FLOW 3−D TruVOF 

Hydromantis Inc. ARTS MOC 

BHR Group FLOWMASTER 2 MOC 

Bentley Systems, Inc. HAMMER MOC 

Stoner Associates, Inc. LIQT MOC 

DHI HYPRESS Finite-Difference Method (4th order) 

University of Auckland HYTRAN MOC 

University of Cambridge PIPENET Transient Module MOC 

University of Kentucky SURGE Wave Method (WM) 

University of Toronto TRANSAM MOC 

Univ. Politécnica de Valencia DYAGATS MOC 

Univ. Politécnica de Valencia ARhIETE MOC 

WL / Delft Hydraulics WANDA MOC 

US Army Corps Engineers WHAMO 
Implicit Finite-Difference Method 

(IFDM) 

DHI MIKE URBAN MOC 

Innovyze H2O SURGE WM 

KYPIPE SURGE WM 

EPA EPA SURGE WM 

Unisont Engineering, Inc. uSLAM MOC 
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Table 1 highlights the MOC and WM. MOC is characterized by 
being explicit and because it allows find more detailed results 
along the pipes [10]. However, in MOC is mandatory to comply 
with the Courant condition (𝑪𝒓) to guarantee its results' stability 
and numerical accuracy, which can cause execution to become 
slower. The WM (formerly known as Characteristic Wave 
Method) has proved to be as accurate as the MOC, although 
faster and computationally more efficient for solving large pipe 
networks composed by several thousand of nodes and pipes [26, 
27]. This is because it solves the state variables (flow rate: 𝑸, 
piezometric head: 𝑯) only in the pipes' boundary nodes, which 
significantly reduces the calculations quantity to be performed in 
each simulation time step (𝚫𝒕). In spite of this, the WM has 
several disadvantages, mainly highlighting: (1) it cannot 
performing calculations related to the vapor cavities, with the 
water demands or with the friction, phenomena that have a 
distributed form along the pipes [4]; (2) 𝚫𝒕 must be sufficient 
small in order to be able to faithfully represent the functions that 
model perturbations in pressures, flows and pressure waves. In 
addition, WM cannot work with excessively short pipes, so the 
WM developers recommending remove such pipes from the 
system since they would have little effect on the steady state 
analysis and would only add unnecessary complications to the 
transient analysis. There is an aspect that characterizes all the 
programs shown in Table 1: they only apply one numerical 
solution scheme to solve the transient flow in all network pipes. 
There are few literature examples where more than one solution 
algorithm has been applied to solve the transient flow within the 
same system, being its main orientation to eliminate the short 
pipes influence in the 𝚫𝒕 determination rather than to constitute 
an alternative to solve the transient in pipes with 𝑪𝒓 < 1.0. For 
example, in MOC’s context, Wylie and Streeter [28], Karney [6] 
and Karney y McInnis [8] use a mathematical expression called 
pipe replacement element (PRE) to dispense with 
disproportionately short pipes that can generate a too small 𝚫𝒕. 
Twyman et al. [19] and Vakil y Firoozabadi [23] also use the PRE 
as a part of the External Energy Dissipator (EED), where the 
replacement element considers within its formulation, apart from 
the pipe itself, the boundary element which is connected 
(reservoir or valve), as a whole. In summary, most of the programs 
designed to solve the transient flow lack the ability to discriminate 
against the 𝑪𝒓 assigned to each pipe and to apply, in each pipe, 
the most appropriate numerical scheme accordingly: MOC when 
the pipe has 𝑪𝒓 = 1.0 (or 𝑪𝒓  ≅ 1.0), and other more stable and 
accurate scheme, for example: IFDM, when the pipe has 𝑪𝒓 < 1.0. 
The objective of the present work is to show the applicability of a 
new numerical methodology that tries to approach the transient 
flow problem through a hybrid or multidirectional-type method 
[13], which has the original peculiarity of solving each system pipe 
in each 𝚫𝒕 according to the MOC or the IFDM depending on the 

𝑪𝒓 present in each pipe. The equations governing transient flow, 
wave speed, and the complete equations defining MOC and IFDM 
can be reviewed in Wylie and Streeter [28, 29]; Chaudhry [1-3], 
and Twyman [20-22]. The theory regarding boundary conditions 
and their solution through the MOC can be extensively reviewed 
in Watters [24], Karney [6] and Karney and McInnis [7, 8]. 
Therefore no further details will be given here. 

2. Material and methods 

2.1. Solution using a hybrid or multidirectional scheme 

An efficient solution for water hammer in pipe networks consists 
in to discriminate each pipe according to its 𝐶𝑟  =  𝑎 ∙  Δ𝑡 / Δ𝑥 (𝑎 
= wave speed, Δ𝑡 = time step and Δ𝑥 = pipe reach length, with 𝐿 
= pipe length and 𝑁 = number of reaches), applying the MOC in 
pipes with 𝑪𝒓 = 1.0 (or 𝑪𝒓 very close to 1.0), and the IFDM in pipes 
with 𝑪𝒓 < 1.0, which means applying a hybrid or multidirectional 
solution scheme [19] -see Figure 1, whose stages will be briefly 
described below.  

2.2. Solve the pipe network for steady-state flow.  

Before starting the transient analysis it is usual to solve the 
network for steady-state flow (𝑄0, 𝐻0) that will be its initial 
solution. At this point it is recommended to avoid those 
algorithms based on nodal approaches (e.g. Method of Cross), 
since they present some convergence problems in complex 
networks, being more appropriate use the Gradient Method 
(GM)-based schemes [11, 15, 16]. Some of the GM advantages 
are: 
 

 It is extremely convergent.  

 It works on open or closed networks (with loops), regardless 
of their complexity level. 

 It converges to the final solution from any initial solution. 
 
The GM is the solution algorithm for EPANET [14] and other 
programs. 

2.3. Network discretization. 

Once the pipe network has been solved for the steady-state flow, 
the transient condition must be calculated, where it is first 
necessary to discretize the network; that is, to determine the 
common 𝚫𝒕 for all the pipes and the Δ𝑥 of each pipe section. This 
is necessary for determine the each pipe's space-time 
computational grid, for which it is necessary to apply the 
following general steps before solving using the MOC: 
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Figure 1: basic hybrid or multidirectional scheme flowchart (tf = maximum simulation time). 

 
 

 Choose the system's shortest pipe (control pipe). Assign a 
value to 𝑁0, for example, 1, 2 or 3 (𝑁0 = number of reaches 
of the shortest pipe). 

 Calculate ∆𝑥0 = 𝐿0/𝑁0 (𝐿0 = length of the shortest pipe). 

 Calculate the wave speed 𝑎0 for the shortest pipe. 

 Once 𝑎0 is calculated, suppose that shortest pipe fulfill with 
Courant, that is: 𝐶𝑛 = 𝑎0 ∙ (∆𝑡/∆𝑥0) = 1.0. 

 Calculate ∆𝑡 = 𝐿0/(𝑁0 ∙ 𝑎0), which corresponds to the 
simulation time step. 

 Known Δ𝑡 suppose for the rest of pipes that 𝐶𝑛 = 𝑁 ∙ 𝑎 ∙
(∆𝑡/𝐿) = 1.0. 

 With each pipe data, calculate 𝑁 = 𝑖𝑛𝑡[𝐿/(𝑎 ∙ ∆𝑡)], where 
the term 𝑖𝑛𝑡 means positive integer value. 

 Once known 𝑁, calculate ∆𝑥 = 𝐿/𝑁. 
 
The procedure shown above allows calculate the simulation time 
step (∆𝑡), the shortest pipe's reach (∆𝑥0) and the reach (∆𝑥) for 
the remaining network´s pipes. With this it is possible to define 

the space - time grid needed to apply the MOC in each pipe.  

2.4. Calculate 𝐻 and 𝑄 for every network node using the MOC.  

It is possible to apply a useful approach to model different 
boundary conditions (or hydraulic devices), which facilitates 𝑄 
and 𝐻 calculation [6, 8, 17, 19]: 
 

𝐻𝑃
𝑡+∆𝑡 = 𝐶𝑐 − 𝐵𝑐 ∙ 𝑄𝑒𝑥𝑡 (1) 

 

Where 𝐻𝑃
𝑡+∆𝑡 = pressure at the pipes point junction; 𝐶𝑐  and 𝐵𝑐  = 

known constants and 𝑄𝑒𝑥𝑡  = external nodal flow, which may be 
constant, a function of time or some constitutive relation 
(polytropic equation). The compatibility equation (1) allows easily 
solve the transient flow in complex networks composed of simple 
nodes, reservoirs, valves, etc., where it is enough to know the 
𝑄𝑒𝑥𝑡  analytical expression for each of these boundary conditions 

in order to determine 𝐻𝑃
𝑡+∆𝑡 value at each simulation time step.   

2.5. For each pipe: verify 𝐶𝑟 value.  

This action is verified with 𝐶𝑟 values calculated in step 2.3. 

Solve the pipe 
network for steady-

state flow

t < tf

t = t + ∆t

Stop

Cr = 1 
(or Cr ≈ 1)

Calculate H and Q
for every boundary 

node using the 
MOC

For every pipe: verify 
the Cr value 

Calculate H and Q
for every internal 

node

Discretize the pipe 
network Build the system A ‧ y = b

using the IFDM, tridiagonalize 
and solve using the Thomas 

algorithm

1

1

YES

NO

NO

YES

Apply MOC
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2.6. If 𝐶𝑟 < 1.0. Build system 𝐴 ∙ 𝑦 = 𝑏 using the IFDM and then 
solve it.  

The system of equations is constructed from the dynamics and 
continuity equations that define the transient flow, and it can be 
expressed for each discretized pipe as follows in IFDM's terms: 
 

𝑑1𝑄𝑖
𝑡+∆𝑡 + 𝑑2𝑄𝑖+1

𝑡+∆𝑡 − 𝑑3𝐻𝑖
𝑡+∆𝑡 + 𝑑3𝐻𝑖+1

𝑡+∆𝑡 + 𝑑4 = 0 (2) 

−𝑐1𝑄𝑖
𝑡+∆𝑡 + 𝑐1𝑄𝑖+1

𝑡+∆𝑡 + 𝑐2𝐻𝑖
𝑡+∆𝑡 + 𝑐3𝐻𝑖+1

𝑡+∆𝑡 + 𝑐4 = 0 (3) 

 
In the system 𝐴 ∙ 𝑦 = 𝑏, 𝑦 is a vector which includes the variables 

𝑄𝑖
𝑡+∆𝑡 and 𝐻𝑖

𝑡+∆𝑡, with 𝑖 = 1, 2, …, 𝑁 + 1, 𝑏 is a vector which 
includes the coefficients 𝑐4 and 𝑑4 for each internal node and for 
the pipe’s boundary conditions (upstream and downstream), and 
𝐴 is a matrix which includes the coefficients 𝑑1, 𝑑2, 𝑑3, 𝑐1, 𝑐2 and 
𝑐3. By means of a suitable arrangement, the matrix 𝐴 can be 
converted in a three-banded matrix which can be solved quickly 
and efficiently using Thomas algorithm, also known as double-
sweep algorithm [12].  

2.7., 2.8. Calculate 𝐻 and 𝑄 for each internal node.  

For the pipe which will be solved by MOC, the following system of 
equations must be solved for each internal node (or section): 
 

𝐻𝑃
𝑡+∆𝑡 = 𝐶𝑃 −

𝑎

𝑔𝐴𝑃

𝑄𝑃
𝑡+∆𝑡 (4) 

𝐻𝑃
𝑡+∆𝑡 = 𝐶𝑀 +

𝑎

𝑔𝐴𝑃

𝑄𝑃
𝑡+∆𝑡 (5) 

 
Where 𝐶𝑃 and 𝐶𝑀 are known constants, 𝑔 = acceleration due to 
gravity and 𝐴𝑃 = pipe cross-section. For the pipes solved by the 
IFDM the solution for each section is known from the solution of 
the system 𝐴 ∙  𝑦 =  𝑏, as is shown in step 2.6. The hybrid 
scheme is exempt from performing interpolations in the pipe 
sections when 𝐶𝑟 < 1.0 because it solves each pipe using the MDFI, 
all of which leads to results with fewer errors (attenuations) in 
comparison with the traditional MOC.  

3. Results: example 1. 

The method described above will be applied to solve water 
hammer in the pipe network shown in Figure 2, which also 
includes numbering of pipes and nodes. The system has nine 
pipes, seven nodes, three loops, one constant level reservoir (𝐻0 
= 191 m) and a fast closure valve (𝑇𝑐  = 0.8 s) located at the 
downstream end of pipe 9. All the network nodes have elevation 

0 (m). Tables 2 and 3 show the system's data (pipes and nodes). 
The maximum simulation time is 50 (s). The steady-state flow was 
solved using EPANET software [14]. Note: for clarity, the term 
pipe is henceforth restricted to conduits that contain at least one 
characteristic reach. The end of each reach, where head and flow 
values must be determined, is called a section. At sections 
internal to a pipe, the discharge can be obtained from (4) or (5). 
However, at each end of the pipe an auxiliary relation between 
head and discharge must be specified. Such a head-discharge 
relation is called a boundary condition. The term node indicates a 
location where boundary sections meet [8].  
 
In all cases of the example 1 nodes will be solved using the MOC 
(equation 1), and each pipe section will be solved by applying: 
 

 MOC (exact solution), which means that all pipes have 𝐶𝑟 = 
1.0. This is achieved by adopting ∆𝑡 = 0.1 (s) and 𝑁 = 6, 8, 
5, 6, 4, 5, 7, 5 and 6 for pipes 1 to 9, respectively. 

 Hybrid scheme in some pipes with 𝐶𝑟 < 1.0. This requires 
discretizing the network as follows: ∆𝑡 = 0.08 (s) and 𝑁 = 6, 
10, 4, 5, 5, 4, 6, 6 and 5 for pipes 1 to 9, respectively, being 
𝐶𝑟 equal to: 0.79, 1.00, 0.64, 0.67, 1.00, 0.64, 0.69, 0.96 and 
0.66.   

 
Figure 3 shows the network scheme together with the main 
equations involved in the transient flow calculation when 
applying the MOC or the hybrid scheme.  
 
Figure 4 shows the result obtained when the transient flow is 
solved by MOC with 𝐶𝑟 = 1.0 in all pipes, and when the hybrid 
scheme is applied with 𝐶𝑟 < 1.0 in most pipes. The hybrid scheme 
solves sections in pipes 1, 3, 4, 6, 7 and 9 using the IFDM. In the 
remaining pipes (2, 5 and 8) sections are solved via the MOC. 
 
Both the result for MOC and the hybrid scheme are shown in 
separate curves in order to visualize the curves shape in both 
cases.  
 
Observing the results of Figure 4, it is noticed at first sight that the 
hybrid scheme shows for node 2 a pressure vs. time curve very 
similar to that given by the MOC (exact). 
 
Tables 4 and 5 summarize the maximum and minimum pressures 
(Figure 4) obtained by the MOC (exact, 𝐶𝑟 = 1.0) and by the hybrid 
scheme (𝐶𝑟 < 1.0) at different simulation times. 
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Figure 2. Network scheme (Example 1). 

 

Table 2. Pipes data. 

Pipe 
number 

Diameter 
𝑫 (mm) 

Length 
𝑳 (m) 

Initial flow 
𝑸𝟎 (L/s) 

Darcy 
friction 𝒇 

Wave speed 
𝒂 (m/s) 

1 914.40 609.60 849.51 0.031 1,005.84 

2 762.00 914.40 406.06 0.028 1,143.00 

3 609.60 609.60 443.44 0.024 1,219.20 

4 457.20 548.64 179.81 0.020 914.40 

5 457.20 457.20 226.25 0.020 1,143.00 

6 457.20 487.68 114.68 0.025 975.40 

7 762.00 670.56 508.57 0.041 957.10 

8 609.60 457.20 340.93 0.030 914.40 

9 914.40 609.60 849.51 0.025 1,005.80 

 
 

Table 3. Network nodes data. A simple node is one that joins only pipes. 

Node number Device (or node) description 𝑯𝟎 (m) 

1 Constant head reservoir 191.00 

2 Simple node 189.28 

3 Simple node 187.90 

4 Simple node 186.48 

5 Simple node 185.85 

6 Simple node 184.25 

7 Control valve 182.88 

 
 

 

 
Figure 3. Network scheme with the solution methods in each pipe and equations 
involved (Up: MOC, bottom: hybrid scheme). 

 

 
Figure 4. Head vs. time plot at node 2 according to the MOC with Courant equal 
to 1.0 in all pipes (exact result), and according to the hybrid scheme with Courant 
less than 1.0 in most pipes. 

 

Table 4. Comparison of maximum heads between MOC and hybrid scheme. 

Maximum 
head number 

MOC 
(𝑪𝒓 = 1.0) 

Time 
(s) 

Hybrid 
scheme 

(𝑪𝒓 < 1.0) 

Time 
(s) 

1 306.17 3.4 305.54 3.4 

2 271.75 15.1 273.81 14.8 

3 261.94 26.5 261.70 26.4 

4 251.82 37.1 245.64 37.2 

5 255.68 48.5 247.38 48.3 
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Table 5. Comparison of minimum heads between MOC and hybrid scheme.  

Minimum 
head number 

MOC 
(𝑪𝒓 = 1.0) 

Time 
(s) 

Hybrid scheme 
(𝑪𝒓 < 1.0) 

Time 
(s) 

1 96.32 9.1 91.5 9.3 

2 111.67 20.6 108.33 20.6 

3 172.49 28.2 171.24 28.1 

4 132.86 43.1 130.80 42.9 

4. Results: example 2. 

 
Figure 5. Network scheme (Example 2). Adapted from Karney and McInnis (1990). 

In this case, the system (Figure 5) is composed of one constant 
level reservoir (𝐻0 = 200 m) located upstream of the system, three 
series pipes plus a fourth parallel to pipe 2, and a quick-closing 
valve (𝑇𝑐  = 1 s) located at the downstream end of pipe 3 [7]. All 
the network nodes have elevation 0 (m). The maximum 
simulation time is 60 (s). Tables 6 and 7 show the data for pipes 
and network nodes, respectively. As in the previous example, the 
transient flow in the network internal nodes will be solved 
according to the following methods: 
 

 MOC (all pipes with 𝐶𝑟 = 1.0). This is achieved by discretizing 
the network as follows: ∆𝑡 = 0.1 (s) and 𝑁 = 20, 10, 10 and 
10 for pipes 1 to 4, respectively.  

 Hybrid scheme with some pipes with 𝐶𝑟 < 1.0. This is 
achieved by adopting the following: ∆𝑡 = 0.07 (s) and 𝑁 = 
28, 10, 10 and 14 for pipes 1 to 4, respectively, being 𝐶𝑟 
equal to: 0.98, 0.70, 0.70 and 0.98. 

 
As in the previous example, boundary nodes will be solved via 
MOC applying equation 1 (reservoir, node, valve), and in this case 
the hybrid scheme will solve all the pipes with 𝐶𝑟  ≥ 0.98 applying 
MOC. Figure 6 shows a network scheme together with the main 
equations involved in the transient flow calculation according to 
MOC and hybrid scheme. The result is shown in Figure 7, which 
corresponds to the head vs. time plot for node 4, where it is 
verified that the hybrid scheme presents a solution similar to that 
obtained by MOC (exact). Tables 8 and 9 summarize the 
maximum and minimum pressures (Figure 5) obtained between 
MOC (exact, 𝐶𝑟 = 1.0) and the hybrid scheme (𝐶𝑟 < 1.0) at different 
simulation times. 

Table 6. Pipes data. 

Pipe 
number 

Diameter 
𝑫 (mm) 

Length 
𝑳 (m) 

Initial flow 
𝑸𝟎 (L/s) 

Darcy 
friction 𝒇 

Wave speed 
𝒂 (m/s) 

1 1.00 2,000 0.933 0.026 1,000 

2 1.00 1,000 0.789 0.026 1,000 

3 1.00 1,000 0.993 0.026 1,000 

4 0.60 1,000 0.204 0.030 1,000 

 

Table 7. Network nodes data. 

Node number Device (or node) description 𝑯𝟎 (m) 

1 Constant head reservoir 200.0 

2 Simple node 195.8 

3 Simple node 194.5 

4 Valve 192.4 

 

 
 

 
Figure 6. Scheme of the network with the solution methods in each pipe and 
equations involved (Top: MOC, bottom: hybrid scheme). 

 

 
Figure 7. Head vs. time plot at node 4 according to MOC with Courant equal to 1.0 
(in all pipes) and the hybrid method with Courant less than 1.0 (in pipes 2 and 3) 
and Courant approximately equal to 1.0 (in pipes 1 and 4). 
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Tables 8 and 9 show a comparison between the maximum and 
minimum pressures obtained between MOC (exact, 𝐶𝑟 = 1.0) and 
the hybrid scheme (𝐶𝑟 < 1.0) at different simulation times. 

Table 8. Comparison of maximum heads between MOC and hybrid scheme. 

Maximum 
head number 

MOC 
(𝑪𝒓 = 1.0) 

Time 
(s) 

Hybrid 
scheme 

(𝑪𝒓 < 1.0) 

Time 
(s) 

1 330.98 6.0 331.56 5.8 

2 380.97 21.9 383.64 21.8 

3 365.57 37.9 370.92 37.8 

4 300.14 53.8 302.66 53.8 

 

Table 9. Comparison of minimum heads between MOC and hybrid scheme. 

Minimum 
head number 

MOC 
(𝑪𝒓 = 1.0) 

Time 
(s) 

Hybrid scheme 
(𝑪𝒓 < 1.0) 

Time 
(s) 

1 37.38 13.9 35.69 13.8 

2 18.11 29.9 13.55 29.8 

3 63.74 45.9 59.06 45.8 

5. Discussion. 

When analyzing the maximum pressures of Example 1 (Table 4), 
it is verified that the maximum error between the hybrid scheme 
and the MOC is less than +4%. In the case of the minimum 
pressures (Table 5), this error is less than +5%. In comparison to 
MOC, the application of the hybrid scheme means a little 
significant computational resources expenditure. For example, in 
the case analyzed (example 1), the MOC discretized the network 
with 𝑁𝑡𝑜𝑡𝑎𝑙  = 52, with the program execution time being 2.4 (s). In 
contrast, the hybrid scheme required 𝑁𝑡𝑜𝑡𝑎𝑙  = 51, with a system 
of equations of maximum size equal to 22x22 corresponding to 
the pipe 2. In addition, it took only 7.9 (s) to solve the problem 
considering a maximum simulation time of 50 (s). In case of having 
applied the IFDM as unique solution algorithm, the size of the 
system of equations would have been at least equal to 112x112, 
with a significant and expected increase in the use of 
computational resources. In analyzing the maximum pressures of 
Example 2 (Table 8), it is observed that the error between the 
hybrid scheme and the MOC is less than +2%. In the case of the 
minimum pressures (Table 9), the hybrid scheme is more 
conservative, with differences varying between -5% and -25% in 
the minimum pressure numbers 2 and 3, respectively. The 
application of the hybrid scheme also does not represent a 
significant computational resources expense, in this case MOC 
needed to discretize the network with 𝑁𝑡𝑜𝑡𝑎𝑙  = 50, with a program 
execution time equal to 2.6 (s). 

In contrast, the hybrid scheme required 𝑁𝑡𝑜𝑡𝑎𝑙  = 62, being the 
maximum size of the system of equations to be solved, at each 
time step, equal to 58x58, corresponding to pipe 1. In addition, it 
took only 8.7 (s) to solve the problem. In case of having applied 
the IFDM as a unique solution algorithm, the size of the system of 
equations would have been at least equal to 128x128, with an 
expected increase in the use of computational resources. 
Examples 1 and 2 were carried out on a standard PC @ 1.66 (GHz). 
The option of applying the IFDM or the MOC in the pipe sections 
depending on whether the 𝐶𝑟 of the pipe is lower or greater than 
a control value CV (for example, 0.98, as adopted in example 2), 
allows a more efficient modeling, because it is meaningless in 
numerical terms to apply the IFDM in a section with a 𝐶𝑟 very 
close to 1.0, e.g. 𝐶𝑟 = 0.98, where MOC aplication is more practical 
without compromising the accuracy level neither the solution 
stability in significant way. Another interesting aspect of hybrid 
scheme is that it can change its nature depending on the value 
that CV takes. For example, when CV = 0 (zero), then the hybrid 
scheme solves all pipes using MOC. This option is useful to apply 
when the network has only pipes with 𝐶𝑟 = 1.0. When CV varies 
between 0 and 1, not including extreme values, the hybrid 
scheme described in this article applies. When CV = 1, then the 
IFDM is applied as the only solution scheme. This solution is valid 
when all pipes have 𝐶𝑟 < 1.0 (this case is more theoretical than 
practical because the pre-specified time interval discretization 
scheme always assigns 𝐶𝑟 = 1.0 to the system shortest pipe). In 
both analyzed examples the hybrid scheme meets the condition 
proposed by Kepler [9] and Wylie [30], who indicating that only 
when 𝜓∗ = ∆𝑡 ∙ 𝑓 ∙ 𝑉0/2𝐷 ≤ 0.02 is possible to ensure that any 
method delivers accurate results. Evaluating the equation 𝜓∗ in 
the examples 1 and 2 is verified for hybrid scheme, and its value 

oscillates between 1.3 ‧ 10−3 and 2.4 ‧ 10−3. In the example 2, the 

range for 𝜓∗ oscillates between 9.1 ‧ 10−4 and 1.3 ‧ 10−3. A hybrid 

scheme disadvantage is that it must work with a 𝑁 = 3 as a 
minimum in those pipes where the IFDM is applied, because the 
pipe discretization must have two pipe reaches at least (one 
upstream and the other downstream) in order to apply the 
equations corresponding to boundary nodes, plus an additional 
pipe reach where to apply the IFDM's dynamics and continuity 
equations. However, this imposition is offset by the fact that the 
IFDM, unlike MOC, requires a smaller increase in the total 𝑁 
amount in order to comply with 𝐶𝑟 in all system pipes, which 
could strongly influence the ∆𝑡 magnitude. Another IFDM's 
disadvantage is that it can report some numerical instability 
(spurious oscillations) when it is applied in pipes with 𝐶𝑟 < 0.5, 
situation that can be easily corrected by slightly increasing 𝑁 size 
(or what is the same, decreasing the ∆𝑥 size) in affected pipes.   
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6. Conclusions. 

It is a fact that pipe networks are generally composed of pipes 
with various physical characteristics, and it is also a fact that some 
water hammer solution schemes, such as the MOC, before their 
execution, must resort to certain shortcuts, such as alteration of 
pipe lengths (𝐿) or wave speed (𝑎) adjustment in order to redraw 
the network discretization and thus to be able to fulfill the 
Courant condition, thus assuring the results' stability and 
numerical accuracy. These shortcuts, despite their wide 
acceptance (and application) in the water hammer theoretical 
and practical areas, have the disadvantage that they can alter the 
initial conditions together with the physics of the problem [5], 
with the risk of leading to results that can be physically 
incompatible, fictitious or without practical application [21]. 
Another way is to keep unchanged 𝑎 and/or 𝐿 values, and fine-
tune both the discretization and the pipe reach length Δ𝑥 =
 𝐿 / 𝑁, which may increase 𝑁 size. Nevertheless, it is clear that 
the application of these measures becomes obsolete when the 
design engineer seeks to solve the problem without altering any 
initial condition, and most importantly, without significantly 
increasing total 𝑁 size. Both conditions constitute a new demand 
level for available waterhammer programs, especially those MOC-
based. In this sense, the hybrid scheme is a good alternative 
solution since it avoids applying a single solution algorithm in 
networks where there are many pipes with 𝐶𝑟 < 1.0, maintaining 
good numerical performance (processing speed, accuracy and 
numerical stability) without the need for modify any initial system 
parameter. The hybrid scheme shown in this article, based on a 
network decoupling, opens the way to implement other solution 
methods different than IFDM for the pipe sections with 𝐶𝑟 < 1.0, 
such as McCormack Method, which is 100% explicit and more 
stable than MOC. 
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