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Abstract 

In the modelling of water distribution systems is common to assume that water demands are located at the 
junctions, with a constant and previously known value. This assumption allows simplify the mathematical 
analysis of the problem, even though in cases of transient flow is more suitable to model the water demand 
assuming that it has a magnitude which is pressure-sensitive. In this article an original pressure-sensitive 
approach valid to calculate the transient flow condition in a pipe with uniformly distributed demands is 
presented. The general conclusion is that the approach based on the pressure-sensitive demand, compared 
with the usual method of the pressure-insensitive demand, shows significant attenuation in pressure which 
may condition the design and/or operating procedure of some devices such as valves or air chambers. 
 
 
Resumen 

En la modelación de los sistemas de distribución de agua es común suponer que las demandas de agua se 
ubican en los nodos donde se unen las tuberías, con un valor constante y previamente conocido. Esta hipótesis 
permite simplificar el análisis matemático del problema, pese a que en los casos de flujo transitorio es más 
adecuado modelar la demanda de agua suponiendo que tiene una magnitud sensible a la presión. En este 
artículo se presenta un enfoque original sensible a la presión, que es válido para calcular la condición de flujo 
transitorio en una tubería con demandas uniformemente distribuidas. La conclusión general es que el enfoque 
basado en la demanda sensible a la presión, en comparación con el método usual de la demanda insensible a 
la presión, muestra una atenuación significativa en la presión que puede condicionar el diseño y/o el 
funcionamiento de algunos dispositivos tales como válvulas o estanques hidroneumáticos. 
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1. Introduction. 

Typically, water modeling programs assume that all demands are 
volume-based, and maintain the user-input demand regardless of 
the calculated available pressure. Although this assumption works 
well under the normal range of pressure conditions, it loses 
accuracy if an episode such as a fire or pump outage causes a 
significant decrease in system pressure. In this context, the 
assumption that all demands are fully satisfied regardless of the 
system pressure becomes unreasonable and represents the main 
limitation of the conventional demand driven analysis (DDA) 
approach to water distribution systems (WDS) modeling [14], 
being the pressure dependent analysis (PDA) superior to DDA 
[15], especially when conventional approach of DDA analysis 
cannot accurately predict the WDS behavior under pressure 
deficient conditions. In abnormal operating conditions, WDS may 
be pressure deficient and thus unable to satisfy demands in full. 
In such circumstances, PDA models are suitable to quantify the 
shortfall in flow and pressure accurately for crucial decision-
making. Such scenarios cannot be simulated satisfactorily with 
the conventional DDA models as they do not consider the 
relationship between nodal flows and the available pressure [13]. 
There are a number of networks (irrigation, water supply 
networks, etc.) which do not follow some assumptions such as 
that water withdrawal takes place at the junctions, with fixed and 
known values. According to Salgado et al. [12], the first 
assumption is aimed at simplifying the mathematical solution of 
the problem, while the second has been a not always suitable 
standard practice since it is well known that consumption is 
pressure-dependent. Industrial applications, such as fire 
protection systems, mining heap leaching, all of them based on 
sprinklers that also deliver water in an amount that is pressure-
dependent. In irrigation systems with sprinklers, drippers or 
porous devices (pots, strips), water is released in a pressure-
dependent fashion; clearly in such systems the pressure-
discharge relationship cannot be ignored. In water supply 
networks, problems such as leakage modeling and extended 
period simulation are also pressure-dependent. As a matter of 
fact most of the network operators do know that if they reduce 
the pressure in the distribution system the total water 
consumption outflow will be reduced. This leads to the standard 
practice of reducing night pressures in order to control system 
leakages. Some of available water hammer software lacks of 
pressure-dependent demand function to calculate the pressures 
within a water system, this situation could produce invalid results 
for certain water systems [2]. Because of the pressure-insensitive 
demand assumption is intrinsically inaccurate and tends to 
overdesign surge protection devices, in the following paragraphs 
a novel simple and useful algorithm for modeling the pressure-
sensitive demand located in junctions using the standard MOC is 
presented, which allows represent the effect of pressure changes 

and produce more accurate transient results. 

2. Material and methods 

2.1 Basic equations of the transient flow 

When analyzing a volume control, is possible to obtain a set of 
non-linear partial differential equations of hyperbolic type valid 
for describing the one-dimensional transient flow in pipes with 
circular cross-sectional area [3, 24]: 
 

𝑎"

𝑔𝐴
𝜕𝑄
𝜕𝑥 +

𝜕𝐻
𝜕𝑡 = 0 (1) 

 
𝜕𝑄
𝜕𝑡 + 𝑔𝐴

𝜕𝐻
𝜕𝑥 +

𝑓
2𝐷𝐴𝑄

|𝑄| = 0 (2) 

 
Where: (1) and (2) correspond to continuity and momentum 
(dynamics) equations, respectively. Besides, ∂ = partial derivative, 
𝐻 = hydraulic grade-line elevation, 𝑎 = wave speed, 𝑔 = gravity 
constant, 𝐴 = pipe cross-sectional area, 𝑄 = fluid flow, 𝑓 = friction 
factor (Darcy-Weisbach) and 𝐷 = inner pipe diameter. The 
subscripts 𝑥 and 𝑡 denote spatial and time dimension, 
respectively. Equations (1) and (2), in conjunction with the 
equations related with the boundary conditions of specific 
devices, describe the phenomenon of wave propagation for a 
water hammer event. 

2.2 Wave speed 

The more general equation to calculate the wave speed in fluids 
without air is [16, 22-23]: 
 

𝑎" =
𝐾/𝜌

1 + [(𝐾/𝐸)(𝐷/𝑒)]𝑐=
 (3) 

 
With: 𝐾 = bulk modulus of the water; 𝜌 = water density; 𝑒 = pipe 
wall thickness; 𝐾 = volumetric compressibility modulus of water; 
𝐸 = elasticity modulus of the pipe; 𝑐= = factor related with the pipe 
support condition, generally equal to 1−𝑢" (𝑢 = Poisson ratio of 
the wall material), which corresponds to pipeline anchored 
against longitudinal movement [23].  

2.3 Method of Characteristics (MOC) 

MOC is very used for solving equations that govern the transient 
flow because it works with a constant wave speed and, unlike 
other methodologies based on finite difference or finite element, 
it can easily model wave fronts generated by very fast transient 
flows. MOC works converting the computational space (𝑥) - time 
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(𝑡) grid (or rectangular mesh) in accordance with the Courant 
condition. It is useful for modelling the wave propagation 
phenomena in WDS due to its facility for introducing the hydraulic 
behavior of different devices and boundary conditions (valves, 
pumps, reservoirs, etc.). According to Karney [7] and Karney and 
McInnis [8], the Method of Characteristics proceeds by combining 
the dynamic and continuity equations together with unknown 
multiplier. Suitable chosen values of this multiplier allows the 
partial differential terms to be combined together and replaced 
by total differentials. When using the simplified governing 
equations the result of this process is: 
 

𝑑𝐻
𝑑𝑡 ±

𝑎
𝑔𝐴

𝑑𝑄
𝑑𝑡 +

𝑎𝑓𝑄|𝑄|
2𝑔𝐷𝐴" = 0 (4) 

 
With the associated equation (𝑄/𝐴 ≪ 𝑎): 
 

𝑑𝑥
𝑑𝑡 = ±𝑎 (5) 

 
The two equations associated with the positive value are usually 
termed the 𝐶D equations and the remaining two relations 
associated with the negative value are called the 𝐶E equations 
(Figure 1). The head and flow values are known at time 𝑡 and it is 
desired to know this values at time 𝑡 + ∆𝑡. A typical such point is 
𝑃, with unknowns 𝐻H and 𝑄H.  
 

 
Figure 1 𝑥 − 𝑡 plane with Characteristics grid (adapted from [8]). 

The ratio of ∆𝑥 to ∆𝑡 is chosen so the associated relation 𝑑𝑥/𝑑𝑡 =
𝑎 is satisfied between 𝐴 and 𝑃, and 𝑑𝑥/𝑑𝑡 = −𝑎 is satisfied 
between 𝐵 and 𝑃. Next, equation (4) is integrated between 𝐴 and 
𝑃 for the 𝐶D equation and between 𝐵 and 𝑃 for the 𝐶E equation. 
The difficulty in this integration lies solely in the friction term, 
since the other terms can be evaluated exactly. The discharge in 
the friction term is usually simply evaluated at 𝐴 or 𝐵 where its 
value is known, which result in a first-order difference solution to 
equations (4) and (5). Following the notation of Wylie and 

Streeter [23] the procedure can be written in the following form:  
 

𝐶D:𝐻H = 𝐶H −
𝑎
𝑔𝐴𝑄H (6) 

 

𝐶E:𝐻H = 𝐶K +
𝑎
𝑔𝐴𝑄H (7) 

 
In which: 
 

𝐶H = 𝐻L +
𝑎
𝑔𝐴𝑄L −

𝑓∆𝑥
2𝑔𝐷𝐴" 𝑄L

|𝑄L| (8) 

 

𝐶K = 𝐻M +
𝑎
𝑔𝐴𝑄M +

𝑓∆𝑥
2𝑔𝐷𝐴" 𝑄M

|𝑄M| (9) 

 
For internal sections where two characteristics met, as a point 𝑃 
in Figure 1, equations (6) and (7) provide a simple solution for 𝐻H. 
This can be written:   
 

𝐻H =
𝐶H + 𝐶K

2  (10) 

 
𝑄H can then be found by back substitution into equation (6) or (7). 
At each end of the pipe one of equations (6) and (7) will be 
available. Solution for unknown head and flow at this point 
cannot then be obtained by the above procedure. Instead, 
consideration must be given to the nature of the boundary 
condition, which generally takes the form of a prescribed relation 
between head and flow. Among MOC main advantages 
highlighting its ease of use, speed and explicit nature, which 
allows calculate the variables 𝑄 and 𝐻 directly from previously 
known values [3, 23]. The main disadvantage of MOC is to be met 
with the Courant stability criterion (𝐶N) that can limit the 
magnitude of the time step (Δ𝑡) common for the entire network. 
In order to get 𝐶N = 1.0, some pipe initial properties can be 
modified (length and / or wave speed). Another way is to keep the 
initial conditions and apply numerical interpolations with risk of 
generating errors (attenuations) in the solution [4]. MOC stability 
criterion states that [9, 17-21]: 
 

𝐶N =
𝑎 ∙ ∆𝑡
∆𝑥 ≤ 1.0 (11) 

 
Where: Δ𝑡 = time step and Δ𝑥 = reach length = 𝐿/𝑁 (with 𝐿 = pipe 
length and 𝑁 = number of reaches). In general, MOC gives exact 
numerical results when 𝐶N = 1.0; otherwise, it generates 
erroneous results in form of attenuations (when 𝐶N < 1.0) or 
numerical instability (when 𝐶N > 1.0). 

Space

Time

∆x

∆t

1 A B N+ 1
t

t+ ∆t
P

C+ C–

Q, H unknown
Q, H known
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2.4 Simple one-node boundary condition 

According to Karney [7], one the most important boundary 
conditions the multi-pipe frictionless junction (Figure 2). 
 

 
Figure 2 Ordinary node (adapted from [7, 8]). 

Let 𝑁= be the set of all pipes whose assumed direction is toward 
the node in question; similarly, let 𝑁" be the set of all pipes whose 
assumed direction is away from the junction. Let one flow be 
identified as external and governed by an auxiliary relation. The 
sign convention is that positive flows are directed away from the 
junction being considered. The assumption that the junction is 
frictionless is equivalent to saying that the hydraulic grade line 
elevation at the node can be represented by a single number, 
designed 𝐻H. For all pipes belonging to the set 𝑁=, the 𝐶D 
characteristic equation holds, while for members of 𝑁" the 𝐶E 
characteristic equation applies. Equations (6) and (7) can be 
rearranged to obtain:   
 

𝑄HW =
−𝐻H
𝐵W

+
𝐶HW
𝐵W

 ∀𝑖 ∈ 𝑁= (12) 

 

−𝑄H[ =
−𝐻H
𝐵[

+
𝐶K[
𝐵[

 ∀𝑗 ∈ 𝑁" (13) 

 
In which: 𝑄HW (𝑄H[) represents the discharge at the boundary 
section of pipe 𝑖 (𝑗). The continuity equation for the junction 
requires the sum of the flows entering the node to equal the sum 
of the flows leaving the node. Thus, the continuity equation can 
be written:  
 

]𝑄HW
W

−]𝑄H[ − 𝑄^_` = 0
[

 (14) 

 
Equations (12) and (13) can be substituted directly into equation 
(14) and an expression for 𝐻H is obtained. The result is: 
 

𝐻H = 𝐶a − 𝐵a ∙ 𝑄^_` (15) 
 

 
Equation (15) represents the general multi-pipe junction with one 
external flow which allows a simple treatment of networks with 
complex topology [11, 25], where: 
 

1
𝐵a
=]

𝑔𝐴W
𝑎W

+]
𝑔𝐴[
𝑎[[W

 (16) 

 

𝐶a = 𝐵a b
𝑔𝐴W
𝑎W

]𝐶HW +
𝑔𝐴[
𝑎[

]𝐶K[
[W

c (17) 

2.5 Modelling of the pressure-sensitive demands 

According to Jung et al. [6], in conventional transient models is 
presumed that the nodal demand is pressure-insensitive under all 
operating conditions, even though is known that in the actual 
systems the demand tends to fluctuate according to the nodal 
pressure. The pressure-sensitive demand can be simulated with 
emitters that discharge the flow to the atmosphere through a 
nozzle or orifice. The flow rate through the emitter varies as a 
function of the pressure available at the junction 𝑗 and it can be 
expressed as [1, 6, 12]: 
 

𝑞[ = 𝐶efgh ∙ 𝑝[
j (18) 

 
Where 𝑞[ = flow rate (L/s) from emitter and 𝑝k = pressure (m) at 
emitter. Both 𝐶efgh = emitter coefficient (L/s/mm) and 𝛽 = emitter 
exponent are normally provided by the emitter manufacturers or 
obtained via least squares fitting to field or laboratory data [12]. 
Using equation (18), the emitter is used to simulate the effect of 
the pressure-sensitive demand.   

2.6 Development of the equations 

Making 𝑞[ = 𝑄^_` and 𝑝 = (𝐻H − 𝑧) in equation (18), and 
replacing the resultant expression into equation (15), the 
following expression can be obtained: 
 

𝐻H = 𝐶a − 𝐵a ∙ 𝐶efgh ∙ (𝐻H − 𝑧)[
j (19) 

 
With 𝑧 = junction elevation. Re-ordering equation (19) we obtain: 
 

𝐻H + 𝐵a ∙ 𝐶efgh ∙ (𝐻H − 𝑧)[
j − 𝐶a = 0 (20) 

 
 
 

Qext
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The novelty that equation (20) gives is that it allows calculate the 
pressure-sensitive demand in any ordinary node no matter the 
number of pipes connected to it. Equation (20) is general because 
it can be reduced to equation (15) when it is assumed that 
demand is pressure-insensitive (𝛽 = 0.0), that means 𝐶efgh =
𝑞[ = 𝑄^_` (L/s/mp.p = L/s) and (𝐻H − 𝑧)[p.p = 1. 

2.7 Solution by Newton-Raphson method 

In equation (20) the only unknown variable 𝐻H cannot be directly 
calculated because of its non-linearity, so that Newton-Raphson 
(NR) method should be applied. The NR method is a powerful 
technique for solving equations numerically. Like so much of the 
differential calculus, it is based on the simple idea of linear 
approximation. The NR iteration is the following: let 𝑥p be a good 
estimate of 𝐻H and let 𝐻H = 𝑥p + ℎ. Since the true root is 𝐻H, and 
ℎ = 𝐻H − 𝑥p, the number ℎ measures how far the estimate 𝑥p is 
from the truth. Since ℎ is “small”, we can use the linear (tangent 
line) approximation to conclude that: 
 

0 = 𝑓(𝐻H) = 𝑓(𝑥p + ℎ) ≈ 𝑓(𝑥p) + ℎ𝑓′(𝑥p) (21) 

 
Where: 
 

𝐻H = 𝑥p + ℎ ≈ 𝑥p −
𝑓(𝑥p)
𝑓′(𝑥p)

 (22) 

 
The new improved estimate 𝑥= of 𝐻H is therefore given by: 
 

𝑥= = 𝑥p −
𝑓(𝑥p)
𝑓′(𝑥p)

 (23) 

 
Continue in this way, if 𝑥t is the current estimate, then the next 
estimate 𝑥tD= is given by: 
 

𝑥tD= = 𝑥t −
𝑓(𝑥t)
𝑓′(𝑥t)

 (24) 

 
The application of formula (24) is for solving equations of the form 
𝑓(𝑥) = 0. The solution is obtained after some calculations until 
when a pre-specified control value is satisfied. 

3. Results 

3.1 Example of application 1 

The example pipe network consists of a constant level reservoir 
(upstream) with 𝐻p = 100 (m), 5 pipes in series and water 

demands at nodes 2 to 6 [6]. The transient flow is generated by 
the decrease of the demand at junction 6 in 1 (s). The Figure 3 and 
tables 1 and 2 show the pipe network example and the system 
data, respectively [6]. The Figures 4 and 5 show the pressure as 
function of time at junctions 2, 4 and 6 according to following 
scenarios: 
  
Scenario 1: pressure-insensitive demand. In this case the 
pressure-insensitive demand (𝑞p) in junctions 2 to 6 means taking 
into account 𝛽 = 0. For that reason, water demands on nodes 2 to 
6 are kept constant and equal to 0.2 (m3/s) during the simulation 
time.  
 
Scenario 2: pressure-sensitive demand. In this case equation (20) 
is solved via NR in order to model the pressure-sensitive demand 
in junctions 2 to 6, taking into account 𝛽 = 0.5 such as is 
recommended by some authors like Jung et al. [6].  
 
In both scenarios the simulation time step is ∆𝑡 = 0.2 (s), ∆𝑥 =
𝐿/𝑁 = 1000 / 5 = 200 (m) and the Courant number in pipes 1 to 5 
is: 𝐶N = 𝑎 ∙ ∆𝑡/∆𝑥 = 1,000 ∙ 0.2 / 200 = 1.0. Steady-state flow was 
calculated using EPANET [10]. In the analyzed example, the 
general sequence of events is the following: after creating the 
initial surge, the surge wave of the pressure-insensitive demand 
was propagated without any disturbance except that the friction 
loss along the pipeline caused a slight attenuation, as is seen in 
Figure 4. On the other hand, the surge wave of the pressure-
sensitive demand experienced dramatic pressure attenuation 
when it passed the junctions (Figure 5). According to Jung et al. 
[6], this is because the positive surge caused a great discharge 
(higher than the constant demand) through the demand node, 
and then the demand increase caused a negative surge that was 
propagated in both upstream and downstream directions. 
Therefore, the negative surge created from the pressure-sensitive 
demand interacted with the initial positive surge, causing some 
pressure dissipation. 
 

 
Figure 3 A small pipeline system (adapted from [6]). 

 
  

1 2 3 4 5 6

Junction

0.2 m3/s 0.2 m3/s 0.2 m3/s 0.2 m3/s 0.2 m3/s

H0 = 100 m
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Table 1 Pipes data (adapted from [6]). 

Pipe 
number 

Diameter 
𝑫 (mm) 

Length 
𝑳 (m) 

Flow 𝑸𝟎 
(L/s) 

Friction 
factor 𝒇 

Wave speed 
𝒂 (m/s) 

1 1,000 1,000 1,000 0.016 1,000 

2 1,000 1,000 800 0.016 1,000 

3 1,000 1,000 600 0.016 1,000 

4 1,000 1,000 400 0.016 1,000 

5 1,000 1,000 200 0.017 1,000 

Table 2 Junctions data (adapted from [6]). 

Junction 
number 

Initial piezometric 
head 𝑯𝟎 (m) 

Elevation 𝒛 
(m) 

Demand 𝒒𝟎 
(L/s) 

1 100.00 0 0.0 

2 98.71 0 200 

3 97.88 0 200 

4 97.40 0 200 

5 97.19 0 200 

6 97.13 0 200 

 

 
Figure 4 Pressure head profiles using pressure-insensitive demand. 
 (𝛽 = 0). 

 
Figure 5 Pressure head profiles using pressure-sensitive demand. 
 (𝛽 = 0.5). 

When the initial positive surge reached the upstream reservoir, 
the behavior of pressure-sensitive demand was the opposite of 
the initial positive surge because the positive surge was converted 
into a negative surge. The negative surge caused a lower 
discharge (lower than the constant demand) through the demand 
node, and then the resulting decrease demand caused a positive 
surge, which dissipated the reflected negative surge from the 
reservoir. Table 3 shows the maximum positive surge (obtained 
by subtracting the maximum transient pressure from the initial 
steady pressure), the maximum negative surge (obtained by 
subtracting the minimum transient pressure from the initial 
steady pressure), and their differences for junctions 2, 4 and 6 and 
for both pressure-insensitive and pressure-sensitive demand 
analyses. The results in Table 3 show a good fit level with the 
results reported by Jung et al. [6]. 

Table 3 Maximum positive and negative surges (PID = pressure-
insensitive demand, PSD = pressure-sensitive demand). 

Junction 
number 

Maximum positive surge Minimum positive surge 

PID PSD PID PSD 

2 25.7 20.3 –23.8 –10.8 

4 26.5 23.6 –23.2 –11,5 

6 27.1 26.4 –23.5 –12.8 

3.2 Example of application 2 

Example 1 served to verify the correct functioning of the 
proposed algorithm. Next, the algorithm will be tested in the 
complex pipe network shown in Figure 6, which consists of 45 
pipes, 29 junctions, 1 constant level reservoir and a valve that 
closes in 1 (s). In junctions 8 and 21 there are constant water 
demands of 50 (L/s) and 15 (L/s), respectively. In the junctions 4, 
11, 17, 23, 24 and 28 there are water demands of magnitude 𝑞p = 
5 (L/s) each one. All the nodes have elevation 0 (m). The tables 4 
and 5 show the junctions and pipes data, respectively. The pipe 
network discretization considers ∆𝑡 = 0.05760875 (s) and a 𝑁 
value that ranges between 2 and 14 depending on the lengths of 
the pipes. Steady-state flow was calculated using EPANET [10]. 
The system was solved by the MOC with 𝐶N = 1.0 in all pipes. 
Figures 7 and 8 show the pressure as function of time at junctions 
11, 17, 24 and 28 according to the following scenarios: 
 
Scenario 1: pressure-insensitive demand. The transient flow is 
generated by valve closure in 1.0 (s). In this case the pressure-
insensitive demand (𝑞p) in junctions 4, 11, 17, 23, 24 and 28 
means taking into account 𝛽 = 0.0. In nodes 8 and 21 the water 
demand also keeps pressure-insensitive during the simulation 
time.  
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Scenario 2: pressure-sensitive demand. The transient flow is 
generated by valve closure in 1.0 (s). In this case equation (20) is 
solved via NR in order to model the pressure-sensitive demand in 
junctions 4, 11, 17, 23, 24 and 28, taking into account 𝛽 = 0.5. In 
nodes 8 and 21 the water demand keeps pressure-insensitive 
during the simulation time. 
 

 
Figure 6 Pipe network example. 

Table 4 Junctions data. 

Junction number Initial piezometric 
head 𝑯𝟎 (m) Demand 𝒒𝟎 (L/s) 

1 70.00 0 

2 58.70 0 

3 50.44 0 

4 44.25 5 

5 40.88 0 

6 39.11 0 

7 40.18 0 

8 38.76 50 

9 54.55 0 

10 49.59 0 

11 46.57 5 

12 42.69 0 

Table 4 (cont.) Junctions data. 

Junction number Initial piezometric 
head 𝑯𝟎 (m) Demand 𝒒𝟎 (L/s) 

13 38.90 0 

14 37.87 0 

15 50.12 0 

16 45.42 0 

17 41.28 5 

18 38.03 0 

19 36.97 0 

20 34.30 0 

21 31.39 15 

22 40.69 0 

23 36.00 5 

24 35.63 5 

25 36.59 0 

26 36.36 0 

27 37.56 0 

28 34.13 5 

29 32.72 0 
 

Table 5 Pipes data. 

Pipe 
number 

Diameter 
𝑫 (mm) 

Length 
𝑳 (m) 

Flow 𝑸𝟎 
(L/s) 

Friction 
factor 𝒇 

Wave speed 
𝒂 (m/s) 

1 200 120 145.00 0.017 1,036.893 

2 150 120 58.05 0.019 1,038.224 

3 150 120 50.13 0.019 1,038.672 

4 110 120 16.16 0.021 187.665 

5 150 120 16.21 0.020 188.448 

6 200 120 50.00 0.018 187.774 

7 75 120 4.19 0.025 1,040.560 

8 150 169.71 33.79 0.019 980.057 

9 200 120 86.95 0.018 186.597 

10 150 120 44.75 0.019 1,038.976 

11 150 120 34.63 0.020 1,039.549 

12 110 120 17.39 0.021 187.535 

13 75 120 6.23 0.024 206.892 

14 75 120 3.15 0.025 207.589 

15 75 169.71 2.88 0.026 209.770 
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Notation:

Water demand q0 (L/s)

[N°] Number of pipe
N° Number of junction

q0 = 5

q0 = 5

q0 = 5

q0 = 5

q0 = 5

q0 = 5
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Table 5 (cont.)  Pipes data. 

Pipe 
number 

Diameter 
𝑫 (mm) 

Length 
𝑳 (m) 

Flow 𝑸𝟎 
(L/s) 

Friction 
factor 𝒇 

Wave speed 
𝒂 (m/s) 

16 75 120 1.31 0.037 208.005 

17 75 120 4.23 0.024 207.344 

18 75 120 4.83 0.024 207.208 

19 110 120 7.92 0.024 188.532 

20 150 120 42.2 0.019 1,039.121 

21 110 120 18.04 0.021 692.441 

22 75 120 7.41 0.024 206.624 

23 75 120 6.94 0.024 206.731 

24 75 120 4.38 0.025 207.310 

25 75 120 6.03 0.024 206.937 

26 110 120 15.00 0.021 187.787 

27 110 120 19.21 0.021 692.318 

28 110 120 17.98 0.021 692.447 

29 75 120 3.19 0.025 207.580 

30 110 169.71 22.99 0.021 979.550 

31 110 120 19.27 0.021 187.337 

32 75 120 5.19 0.024 207.127 

33 110 120 20.39 0.021 187.220 

34 75 120 3.75 0.027 207.453 

35 75 120 2.38 0.029 207.763 

36 75 169.71 3.78 0.024 209.566 

37 75 120 6.96 0.024 206.726 

38 75 120 2.35 0.029 207.770 

39 75 120 1.40 0.025 207.985 

40 150 120 35.30 0.020 1,039.511 

41 200 120 24.70 0.020 1,040.722 

42 75 120 4.38 0.025 207.310 

43 150 169.71 30.92 0.020 980.219 

44 150 120 24.08 0.020 1,040.146 

45 200 120 50.00 0.018 1,039.917 

 

 
Figure 7 Pressure head profiles (𝛽 = 0.0) 

 

 
Figure 8 Pressure head profiles (𝛽 = 0.5) 

 
When comparing Figures 7 and 8 it is verified that PSD reduce the 
extreme pressures magnitude, which tend to decay quickly after 
5 (s) of simulation time. Table 6 shows a comparison between 
maximum positive and negative surges when PID and PSD 
scenarios are simulated. 
 

Table 6 Maximum positive and negative surges (PID = pressure-
insensitive demand, PSD = pressure-sensitive demand). 

Junction 
number 

Maximum positive surge Minimum positive surge 

PID PSD PID PSD 

11 27.3 26.8 0.0 −0.5 

17 55.2 52.7 0.0 −0.3 

24 55.9 51.9 0.0 0.0 

28 77.5 75.8 0.0 0.0 
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4. Conclusions 

Each hydraulic modeling exercise requires certain assumptions 
and approximations to simplify the problem and facilitate 
obtaining the solution. The assumption of pressure-insensitive 
demand has been widely applied to surge analysis but this 
modeling approach may be problematic because it ignores the 
implicit relationships between demand and pressure inherent in 
actual pipe systems [6]. The pressure transients can drastically 
alter the local pressures, which in turn can significantly affect the 
magnitude of nodal demands that can be extracted. The 
assumption of pressure-insensitive demand exaggerates a surge 
wave in the system, leading to conservative solutions which could 
lead to overdesign surge-protection devices. An over designed 
system sometimes can be more detrimental than an under 
designed one because the over designed hydraulic devices 
themselves may deteriorate the surge response of the system. A 
more realistic water hammer simulation should always consider 
pressure-sensitive demand behavior in some singular network 
nodes, even when this approach may increase the numerical 
problem complexity. For that reason, in some cases could be 
more efficient to apply the pressure-sensitive demand approach 
only on network nodes which often present very high and fast 
flow variations, like sudden demand due to fire cases. Another 
application for pressure-sensitive demand approach is for more 
accurately estimate contaminant intrusion in WDS [6]. 
Contaminants can intrude into pipes through leaks during a 
negative pressure transient; the surge model using pressure-
sensitive demand can simulate the location, amount and duration 
of these intrusions. The application of pressure-sensitive demand 
approach in very large and complex pipe networks may affect the 
execution time because the Newton-Raphson method must be 
applied in order to calculate the pressure-sensitive demand in 
hundreds or thousands of significant junctions, this in each time 
step. In the example 1 the execution time for scenarios 1 and 2 
was 0.7 (s) and 0.8 (s), respectively. In example 2, the execution 
time was 19.7 (s) and 20.2 (s) for scenarios 1 and 2, respectively. 
Water hammer program was carried out in a standard PC of 32 
bits with a processing speed equal to 1.66 (GHz). Proposed 
algorithm needs the following improvements, such as the 
inclusion in the model of the cross-correlation (interdependence) 
between forthcoming demands, and to implement an algorithm 
that allows calculate the transient flow in systems with uniformly 
distributed demands, not only in the junctions of the pipe 
network but also on pipe internal nodes without having to alter 
the discretization initially adopted for the system. This is because 
it is well known that water demands are distributed along the 
pipelines, and that their allocation at the junctions just 
corresponds to a simplification generally accepted for modeling 
purposes. This would allow having simulations closer to reality. 

Finally, the NR method sometimes it may not converge due to 
different reasons. Sometimes it may overlook the root you are 
trying to find and converge to a different root, and sometimes it 
may fail to converge altogether. In this sense, NR method is very 
sensitive to 𝛽 value in equation (20), being recommendable 
always to work with 𝛽 equal to or near 0.5. 
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